Biomechanical Response of Platelets to Superhydrophobic Surface in Mechanical Heart Valves and Other Blood-Contacting Medical Devices

机械心脏瓣膜和其他血液接触医疗器械中血小板对超疏水表面的生物力学反应

基本信息

  • 批准号:
    9231050
  • 负责人:
  • 金额:
    $ 3.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-10 至 2018-09-09
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): As the leading cause of death in industrialized nations and as an increasing problem in developing countries, the treatment for cardiovascular disease can impact a very large population. Interventions common to cardiovascular disease involve blood-contacting medical devices that are at-risk for thrombosis (blood clots). Since thrombosis on these devices can lead to ischemia in vital organs and possible death, it is critical to mitigate the risk. Therefore, patients are commonly placed on antiplatelet and anticoagulant drug regimens. Unfortunately, these therapies can create additional bleeding risks and do not completely prevent the risk for thrombosis. Therefore, many material scientists have been investigating alternative non-thrombogenic materials to those currently used in order to minimize the need for drug therapeutics. Superhydrophobic surfaces are one of the surface treatments that has exhibited excellent results in static conditions at mitigating processes involved in thrombus growth. However, the response of blood to superhydrophobic materials remains ill-defined in a flow environment more relevant to cardiovascular devices. This environment consists of spatially changing shear, which has been shown to have a very large impact on platelet aggregation. Therefore the ultimate goal of the proposed work is to assess superhydrophobic materials in this environment to determine if these materials should be investigated further for devices such as prosthetic heart valves or stents. For this investigation we have 2 aims: Specific Aim 1) Prepare and characterize superhydrophobic surfaces in microfluidic channels involving large changes in shear rate. A series of surface treatments of varying texture and surface energy will be characterized by evaluating contact angles, surface structure, and flow over the surfaces. These treatments will be applied to microfluidic channels involving flow constrictions to assess material durability in a shear environment and to determine if air pockets exist along the superhydrophobic surface, which is common to surfaces with texture and low surface energy. Specific Aim 2) Analyze the impact of spatially varying hemodynamic shear forces on blood cell dynamics and the role for chemical activators using a novel Lab-on-Chip approach. We will be testing the ability for superhydrophobic surfaces to prevent platelet aggregation in a shear gradient. To test this, a series of microfluidic devices wil be developed for high throughput evaluation of material thrombogencity in a flow environment pertinent to medical devices. These tools will be combined with imaging techniques to evaluate different shear environments to guide future cardiovascular device designs and to determine the role for soluble agonist platelet activation in the aggregation process for superhydrophobic surfaces.
 描述(由申请人提供):作为工业化国家的首要死亡原因以及发展中国家日益严重的问题,心血管疾病的治疗可能影响大量人群。心血管疾病的常见干预措施涉及血液接触医疗设备。由于这些设备上的血栓可能导致重要器官缺血并可能导致死亡,因此这一点至关重要。 因此,患者通常接受抗血小板和抗凝药物治疗,但不幸的是,这些疗法可能会产生额外的出血风险,并且不能完全预防血栓形成的风险。因此,许多材料科学家一直在研究替代的非血栓形成材料。超疏水表面是目前使用的表面处理方法之一,它在缓解血栓生长过程中表现出优异的效果。在与心血管装置更相关的流动环境中,材料仍然不明确,这种环境由空间变化的剪切力组成,这已被证明对血小板聚集有很大的影响,因此,拟议工作的最终目标是评估超疏水材料。在这种环境中,以确定是否应该进一步研究这些材料用于人工心脏瓣膜或支架等装置。对于这项研究,我们有 2 个目标: 具体目标 1) 制备和表征涉及大变化的微流体通道中的超疏水表面。一系列不同纹理和表面能的表面处理将通过评估接触角、表面结构和表面流动来表征,这些处理将应用于涉及流动收缩的微流体通道,以评估材料在剪切环境中的耐久性。并确定超疏水表面是否存在气穴,这对于具有纹理和低表面能的表面是常见的。 具体目标 2) 分析空间变化的血流动力学剪切力对血细胞动力学的影响以及化学的作用。我们将使用新型芯片实验室方法测试超疏水表面在剪切梯度中防止血小板聚集的能力。为了测试这一点,将开发一系列微流体装置,用于高通量评估材料的血栓形成性。这些工具将与成像技术相结合,评估不同的剪切环境,以指导未来的心血管设备设计,并确定可溶性激动剂血小板激活在聚集过程中的作用。用于超疏水表面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Bark其他文献

David Bark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Bark', 18)}}的其他基金

Paper-based high shear hemostatic analytical device
纸基高剪切止血分析装置
  • 批准号:
    10649056
  • 财政年份:
    2023
  • 资助金额:
    $ 3.44万
  • 项目类别:
Impact of turbulence on blood in mechanical circulatory support
机械循环支持中湍流对血液的影响
  • 批准号:
    10634686
  • 财政年份:
    2022
  • 资助金额:
    $ 3.44万
  • 项目类别:
Biomechanical Response of Platelets to Superhydrophobic Surface in Mechanical Heart Valves and Other Blood-Contacting Medical Devices
机械心脏瓣膜和其他血液接触医疗器械中血小板对超疏水表面的生物力学反应
  • 批准号:
    8984225
  • 财政年份:
    2015
  • 资助金额:
    $ 3.44万
  • 项目类别:

相似国自然基金

轻质镁钪应变玻璃合金的宽温域大回复应变特性及机理
  • 批准号:
    52301246
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多项式时间下的多重回复性与多重遍历平均及其应用
  • 批准号:
    12371196
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
激光立体成形梯度TiNi形状记忆合金的渐变回复机理研究
  • 批准号:
    52371199
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
强回复作用下无取向电工钢多组分{100}织构调控机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
平均场随机微分方程解的回复性及稳定性
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Effect of slip bonds due to type 2B von Willebrand Disease on platelet adhesion, aggregation, and contractile forces
2B 型冯维勒布兰德病导致的滑移键对血小板粘附、聚集和收缩力的影响
  • 批准号:
    10525260
  • 财政年份:
    2020
  • 资助金额:
    $ 3.44万
  • 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
  • 批准号:
    9032130
  • 财政年份:
    2016
  • 资助金额:
    $ 3.44万
  • 项目类别:
Multiscale Modeling of Blood Flow and Platelet Mediated Thrombosis
血流和血小板介导的血栓形成的多尺度建模
  • 批准号:
    9265504
  • 财政年份:
    2016
  • 资助金额:
    $ 3.44万
  • 项目类别:
Biomechanical Response of Platelets to Superhydrophobic Surface in Mechanical Heart Valves and Other Blood-Contacting Medical Devices
机械心脏瓣膜和其他血液接触医疗器械中血小板对超疏水表面的生物力学反应
  • 批准号:
    8984225
  • 财政年份:
    2015
  • 资助金额:
    $ 3.44万
  • 项目类别:
Subcellular Platelet Forces and Adhesions
亚细胞血小板力和粘附
  • 批准号:
    7924002
  • 财政年份:
    2009
  • 资助金额:
    $ 3.44万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了