Novel tools for cell-specific imaging of functional connectivity and circuit operations

用于功能连接和电路操作的细胞特异性成像的新工具

基本信息

  • 批准号:
    9036880
  • 负责人:
  • 金额:
    $ 70.57万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-23 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): Fundamental to understanding brain function is the ability to relate the spatio-temporal firing patterns of specific neurons to their functional connectivity and determine the strength and experience-dependent regulation of those connections. Genetically-encoded optical indicators have revolutionized both endeavors, enabling action potentials and synaptic transmission to be detected, but these approaches face two major hurdles: 1) overly dense expression often makes it impossible to trace the morphology and hence connectivity of specific neurons, and 2) there has been no method to measure the probability of synaptic transmission (Pr) and quantal size of synapses in vivo, leading synaptic strength connections and the mechanism of experience- dependent change unresolved. The first problem emerges from a lack of ability to target activity indicators to specific cells that are few enough in number so that their morphology and physical connectivity could be determined in a densely packed environment, to then permit the physical picture to be related to activity and connectivity. To meet this challenge, we propose a generalizable strategy for the creation of "turn-on" genetically-encoded activity indicators. These indicators are rationally modified from some of the best existing indicators of neural activity and synaptic transmission. The re-engineering enables the indicators to be activated by light to provide a Golgi-like view of cell morphology and report on action potentials and synaptic input. Because the indicators are turned on by light (unlike in the random labeling methods like the Golgi stain), one can select specific target cells and functionally image densely packed cells whose processes heavily overlap while knowing which process belongs to which cell, thereby permitting a simple form of elegant connectivity mapping. The second problem emerges from the lack of a method for synapse-specific quantal analysis. Large-scale quantal resolution imaging of synaptic responses would represent a powerful addition to the experimental neuroscience toolkit to help address how dynamic changes in synaptic strength contribute to sensation, action, learning and memory. Despite a wealth of knowledge on synaptic function in reduced ex vivo preparations, such as brain slices, due to the lack of effective tools, our knowledge of synaptic function in vivo during learning and behavior is extremely limited. A new approach that overcomes this technical gap would bridge the divide between synaptic and circuit level analyses in awake, behaving animals. High signal-to-noise spine level calcium imaging in behaving animals could address this gap. To meet this challenge we propose to develop synaptically-targeted calcium indicators that enable excitatory synaptic transmission to be imaged with quantal resolution simultaneously at hundreds to thousands of connections. Because this is an imaging method, it provides synapse-specific information that one cannot readily obtain from electrophysiological recordings that lump together measurements from a large number of inputs distributed over a neuron's dendritic tree. Optical quantal analysis in behaving animals would permit direct assessment of the dynamic fluctuations in synaptic efficacy that may underlie learning. It will also open whole new avenues of research that could explore how changes in synaptic efficacy contribute to fundamental aspects of sensation, action, and higher cognitive function. The collaboration between Isacoff, Scott and Adesnik enables these new tools to be validated for in vivo applications in brain circuit analysis and behavior in three model organisms: zebrafish, fruitfly and mouse.
 描述(由申请人提供):理解大脑功能的基础是将特定神经元的时空放电模式与其功能连接联系起来,并确定这些连接的强度和经验依赖性调节的能力,基因编码的光学指示器已经发生了革命性的变化。这两项努力都使得动作电位和突触传递能够被检测到,但这些方法面临两个主要障碍:1)过于密集的表达通常使得无法追踪特定神经元的形态和连接性,2)目前还没有方法可以测量体内突触传递的概率(Pr)和突触的定量大小,导致突触强度连接和经验依赖性变化的机制尚未解决。第一个问题来自于缺乏针对活动指标的能力。到数量足够少的特定细胞,以便可以在密集的环境中确定它们的形态和物理连接性,然后允许物理图像与活动和连接性相关。为了应对这一挑战,我们提出了一种可推广的策略。这创建“开启”基因编码的活动指示器这些指示器是对一些现有的最好的神经活动和突触传递指示器进行合理修改的,使指示器能够被光激活以提供类似高尔基体的功能。查看细胞形态并报告动作电位和突触输入,因为指示器是通过光打开的(与高尔基染色等随机标记方法不同), 人们可以选择特定的目标细胞,并对那些过程严重重叠的密集细胞进行功能成像,同时知道哪个过程属于哪个细胞,从而允许一种简单形式的优雅连接映射。第二个问题来自于缺乏突触特异性量子方法。尽管我们对突触功能有丰富的了解,但突触反应的大规模定量分辨率成像将是对实验神经科学工具包的有力补充,有助于解决突触强度的动态变化如何影响感觉、行动、学习和记忆。由于缺乏有效的工具,减少了脑切片等离体准备工作,我们对学习和行为过程中体内突触功能的了解极其有限,克服这一技术差距的新方法将弥合突触和电路水平之间的鸿沟。对清醒、行为动物的高信噪比脊柱水平钙成像可以解决这一差距。为了应对这一挑战,我们建议开发突触靶向钙指示剂,使兴奋性突触传递能够成像。由于这是一种成像方法,因此它可以提供突触特定的信息,而电生理记录无法轻松地将分布在神经元树突树上的大量输入的测量结果汇总在一起。对行为动物的研究将允许直接评估可能构成学习基础的突触功效的动态波动,它还将开辟全新的研究途径,探索突触功效的变化如何影响基本方面。 Isacoff、Scott 和 Adesnik 之间的合作使这些新工具能够在三种模型生物(斑马鱼、果蝇和小鼠)的脑回路分析和行为中得到验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ehud Isacoff其他文献

Ehud Isacoff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ehud Isacoff', 18)}}的其他基金

Conformational mechanisms of mGluR gating and regulation
mGluR 门控和调节的构象机制
  • 批准号:
    10298420
  • 财政年份:
    2021
  • 资助金额:
    $ 70.57万
  • 项目类别:
Conformational mechanisms of mGluR gating and regulation
mGluR 门控和调节的构象机制
  • 批准号:
    10665636
  • 财政年份:
    2021
  • 资助金额:
    $ 70.57万
  • 项目类别:
Conformational mechanisms of mGluR gating and regulation
mGluR 门控和调节的构象机制
  • 批准号:
    10443878
  • 财政年份:
    2021
  • 资助金额:
    $ 70.57万
  • 项目类别:
Optical control of neuromodulatory GPCRs
神经调节 GPCR 的光学控制
  • 批准号:
    10012228
  • 财政年份:
    2020
  • 资助金额:
    $ 70.57万
  • 项目类别:
Synaptic to circuit homeostasis in the Drosophila locomotor system
果蝇运动系统中的突触与电路稳态
  • 批准号:
    10654556
  • 财政年份:
    2019
  • 资助金额:
    $ 70.57万
  • 项目类别:
Synaptic to circuit homeostasis in the Drosophila locomotor system
果蝇运动系统中的突触与电路稳态
  • 批准号:
    10438585
  • 财政年份:
    2019
  • 资助金额:
    $ 70.57万
  • 项目类别:
Synaptic to circuit homeostasis in the Drosophila locomotor system
果蝇运动系统中的突触与电路稳态
  • 批准号:
    10210452
  • 财政年份:
    2019
  • 资助金额:
    $ 70.57万
  • 项目类别:
Voltage Gating Mechanisms
电压门控机制
  • 批准号:
    9010555
  • 财政年份:
    2016
  • 资助金额:
    $ 70.57万
  • 项目类别:
Novel tools for cell-specific imaging of functional connectivity and circuit operations
用于功能连接和电路操作的细胞特异性成像的新工具
  • 批准号:
    9343283
  • 财政年份:
    2015
  • 资助金额:
    $ 70.57万
  • 项目类别:
Optical control of synaptic transmission for in vivo analysis of brain circuits and behavior
突触传递的光学控制用于脑回路和行为的体内分析
  • 批准号:
    8934227
  • 财政年份:
    2014
  • 资助金额:
    $ 70.57万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Administrative Core
行政核心
  • 批准号:
    10496281
  • 财政年份:
    2023
  • 资助金额:
    $ 70.57万
  • 项目类别:
Prefrontal circuit mechanisms of repetitive transcranial magnetic stimulation
重复经颅磁刺激的前额电路机制
  • 批准号:
    10649292
  • 财政年份:
    2023
  • 资助金额:
    $ 70.57万
  • 项目类别:
Role of Primary Sensory Neuron CaMKII Signaling in Regulation of Pain
初级感觉神经元 CaMKII 信号传导在疼痛调节中的作用
  • 批准号:
    10656886
  • 财政年份:
    2023
  • 资助金额:
    $ 70.57万
  • 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
  • 批准号:
    10679796
  • 财政年份:
    2023
  • 资助金额:
    $ 70.57万
  • 项目类别:
Animal, Behavior and Tissue Core
动物、行为和组织核心
  • 批准号:
    10496282
  • 财政年份:
    2023
  • 资助金额:
    $ 70.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了