ROS driven mitochondrial-telomere dysfunction during environmental stress
环境应激期间ROS驱动线粒体端粒功能障碍
基本信息
- 批准号:8926521
- 负责人:
- 金额:$ 20.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-04-07 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:1-Methyl-4-phenylpyridiniumAnimal ModelBiogenesisBiological AssayCell SurvivalCellsChemicalsChemistryComplexDNA DamageDevelopmentDiseaseEmbryoEnvironmental ExposureEnvironmental Risk FactorExhibitsExposure toFoundationsFunctional disorderGenerationsHousingHumanInterventionLifeLightMaintenanceMammalian CellMeasuresMediatingMitochondriaMitochondrial DNAModelingMolecularMonitorNerve DegenerationNeuronsNuclearOrganParkinson DiseaseParkinsonian DisordersPathogenesisPathologyPeptidesPesticidesPhasePhenotypePhysiologicalProcessProductionProteinsReactive Oxygen SpeciesRoleRotenoneSinglet OxygenSiteStressStructureSymptomsSystemTERF1 geneTechnologyTelomere ShorteningTelomere-Binding ProteinsTestingTetanus Helper PeptideToxic Environmental SubstancesToxic effectTransgenic AnimalsTransgenic MiceTransgenic OrganismsVisible RadiationWhole OrganismZebrafishage relatedcell typedopaminergic neuronenvironmental stressorevent cyclefunctional declinehealthy aginghuman diseaseinnovationinsightmitochondrial dysfunctionneuron lossnoveloxidative damagepublic health relevanceresponsesensortelomeretooltoxicant
项目摘要
DESCRIPTION (provided by applicant): Maintenance of mitochondrial and telomere function are critical for healthy aging, and significant cross-talk occurs between these distinct compartments. Many environmental factors cause mitochondrial dysfunction and subsequent reactive oxygen species (ROS) generation that particularly damage the telomeres. This project will directly test the hypothesis that oxidative damage at telomeres cause mitochondrial dysfunction, and conversely that oxidative damage to mitochondrial DNA cause telomere dysfunction, and that this reciprocal damage contributes to several environmentally-induced human disease, including neurodegeneration in Parkinson's disease (PD). We will monitor ROS flux in distinct cellular compartments using a highly innovative system consisting of fluorescent protein tagging and visible light to rapidly induce ROS, and fluorogen-activating peptides (FAPs) with unique chemical sensors to detect ROS. These FAPs will also be used with different chemical moieties to generate different types of ROS. We will use an environmental pesticide associated with PD as a mitochondrial toxicant to examine ROS flux and subsequent telomere damage. The R21 phase will develop and validate this approach first in human cells and will generate transgenic animals for applying this system to zebrafish. Aim 1 will use the KillerRed ROS-generating system to examine how ROS generation in mitochondria impacts telomere function, and reciprocally how ROS generation at telomeres alters mitochondrial function. Aim 2 will develop the FAP system for sensing and producing ROS within the mitochondria or telomeres, and will use this technology to examine ROS flux from the mitochondria to the telomeres. We will create transgenic zebrafish driver lines for localized FAP-mediated ROS sensing and generation in the mitochondria or telomeres. The R33 phase will apply the targeted ROS sensing/producing system toward investigating the underlying mechanisms of dysfunctional mitochondria and telomere cross-talk in human neuronal cells (Aim 3), in transgenic zebrafish embryos (Aim 4) and in a specific zebrafish model of PD (Aim 5). These innovative studies will measure the temporal and spatial generation of ROS in living cells and provide mechanistic insight into how dysfunctional telomeres or mitochondria influence each other in the process of environmentally-induced human diseases, including PD. This project builds tools and capacity for examining ROS-mediated flux and mitochondrial cross-talk in response to environmental stressors. Completion of this project will lay the foundation for developing new interventions to better mitigate the negative effects of environmental exposures on telomere and mitochondria function, serving to ameliorate or delay aging-related diseases and pathologies.
描述(由申请人提供):线粒体和端粒功能的维持对于健康衰老至关重要,并且这些不同的区室之间会发生显着的串扰,许多环境因素会导致线粒体功能障碍和随后的活性氧(ROS)生成,尤其会损害端粒。该项目将直接检验端粒氧化损伤导致线粒体功能障碍,反过来线粒体 DNA 氧化损伤导致端粒功能障碍的假设。相互损伤会导致多种环境诱发的人类疾病,包括帕金森病 (PD) 中的神经退行性变。我们将使用由荧光蛋白标记和可见光组成的高度创新的系统来监测不同细胞区室中的 ROS 通量,以快速诱导 ROS。具有独特化学传感器的激活肽(FAP)可以检测 ROS。这些 FAP 也将与不同的化学部分一起使用,以产生不同类型的 ROS。 R21 阶段将首先在人类细胞中开发和验证这种方法,并将生成转基因动物,以便将该系统应用于斑马鱼。 Aim 1 将使用 KillerRed ROS 生成系统来检查 ROS 如何产生。线粒体中的 ROS 生成会影响端粒功能,而端粒中的 ROS 生成也会反过来影响线粒体功能。Aim 2 将开发 FAP 系统,用于在其中感测和产生 ROS。线粒体或端粒,并将使用该技术来检查从线粒体到端粒的 ROS 通量。我们将创建转基因斑马鱼驱动线,用于线粒体或端粒中的局部 FAP 介导的 ROS 传感和生成。R33 相将应用目标。 ROS 传感/产生系统,用于研究转基因斑马鱼胚胎中人类神经元细胞功能性线粒体和端粒串扰的潜在机制(目标 3) (目标 4)和特定的 PD 斑马鱼模型(目标 5)中,这些创新研究将测量活细胞中 ROS 的时间和空间生成,并提供功能失调的端粒或线粒体在环境过程中如何相互影响的机制见解。 -诱发的人类疾病,包括PD。该项目建立了检查ROS介导的通量和线粒体串扰以应对环境压力的工具和能力,该项目的完成将为开发新的干预措施奠定基础,以更好地缓解压力。环境暴露对端粒和线粒体功能的负面影响,有助于改善或延缓与衰老相关的疾病和病理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patricia L Opresko其他文献
Patricia L Opresko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patricia L Opresko', 18)}}的其他基金
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
- 批准号:
10617802 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
- 批准号:
10152593 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Excision Repair of Environmental Telomere Damage
环境端粒损伤的切除修复
- 批准号:
10397054 - 财政年份:2019
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
8556629 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
8854084 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
9064774 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
9277466 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
Mechanisms of Telomere Resistance to DNA Lesion Removal
端粒对 DNA 损伤去除的抵抗机制
- 批准号:
8728857 - 财政年份:2013
- 资助金额:
$ 20.79万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of long noncoding RNA CRNDE in normal physiology and cancer
长链非编码RNA CRNDE在正常生理和癌症中的作用
- 批准号:
10715065 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Host Defense Small Molecule Development for COVID-19 Treatment by Targeting Lysosome
通过靶向溶酶体治疗 COVID-19 的宿主防御小分子开发
- 批准号:
10735492 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Cerebrovascular endothelial cilia in the pathogenesis and therapy of Alzheimer's disease
脑血管内皮纤毛在阿尔茨海默病发病机制和治疗中的作用
- 批准号:
10575082 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Decoding the Paradox of DDX41-mutant MDS
解读 DDX41 突变型 MDS 的悖论
- 批准号:
10905168 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别:
Targeting Mitochondrial Redox Capacity to Overcome Cancer Subtype that Regrowth After Radiation
针对线粒体氧化还原能力来克服放射后再生的癌症亚型
- 批准号:
10817512 - 财政年份:2023
- 资助金额:
$ 20.79万 - 项目类别: