Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
基本信息
- 批准号:8742734
- 负责人:
- 金额:$ 19.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AllograftingAnimalsAutopsyBiomechanicsBiomedical EngineeringBone callusCellsCenters of Research ExcellenceClinicalComplicationCoupledDataDefectDevicesDiagnostic radiologic examinationEffectivenessElectronicsEvaluationFiberFractureFracture FixationFracture HealingGoalsHealedHistologyHumanImageImage AnalysisImplantIn SituIn VitroIncidenceIndividualInfectionInternal FixatorsMeasurementMeasuresMechanicsMedialMentorsModelingMolecularMonitorMuscleNatural regenerationOperative Surgical ProceduresOpticsOrthopedicsOryctolagus cuniculusOsteotomyPainPatientsPhysiciansPilot ProjectsPoint-of-Care SystemsPopulationPrincipal InvestigatorPropertyReadingResearchResearch PersonnelRiskSimulateSolutionsSpecimenSpectrum AnalysisSurgeonSystemTechniquesTestingThickTibial FracturesTissuesTitaniaTitaniumWalkingWireless Technologybasebioimagingbonebone healingbone morphogenetic protein 2costhealingin vivoinnovationinnovative technologiesinstrumentlimb fractureluminescencemusculoskeletal injurynovelosteogenicperiostinprogramsregenerativerepairedresearch studysample fixationsensortibiatool
项目摘要
We will develop a noninvasive technique to measure strain on orthopedic plates in order to quantify the
mechanical stiffness of bone fracture calluses and to assess the effectiveness of osteoinductive treatments.
Over 28 million musculoskeletal injuries are treated annually in the US including 2 million fracture-fixation
surgeries. Limb fractures with large segmental defects are especially challenging to treat and have high rates
of non-union and revision surgeries. A key goal in orthopedic research is to develop osteoinductive treatments
(e.g., using BMPs, or periostin) to accelerate healing and reduce complication rates. To help researchers
develop and optimize these regenerative treatments, and to help physicians evaluate healing in individual
patients, there is an urgent need for techniques to quantify mechanical properties of fracture calluses in vivo.
Although animal studies have used transcutaneously connected resistive strain gauges to measure decreasing
plate strain during healing as the fracture callus stiffens and increasingly shares the load, the connecting wires
would be infection risks and impractical for human patients. We will develop a novel, elegant, low-cost,
sensitive, noninvasive, and highly versatile solution based on luminescence spectroscopy. While optical
displacements are commonly measured in vitro via image analysis, our approach is novel in that we perform
sensitive measurement through tissue by measuring spectral changes in essentially background-free, deeply
penetrating upconversion luminescence. The measurements can be made using a portable spectrometer
system for point-of-care measurements, and the gauges have a low profile for simple incorporation into or onto
existing plates. We will calibrate the sensor by measuring the luminescence spectrum as a function of load (4-
point bending and axial compression) in a plated tibia-equivalent specimen and evaluate strain sensitivity
through various tissue thicknesses. We will then implant a titanium dynamic-compression plate with a
luminescent strain gauge into 4 groups of rabbits in a tibial osteotomy model with varying defect sizes to
control healing rate. We will measure the implant strain in each group over a period of 6 weeks and compare
results with in vivo �-CT in the Bioengineering and Bioimaging Core, as well as histology in the Cell, Tissue,
and Molecular Analyses Core. We will then repeat the experiments for rabbits treated with osteogenic
molecules (BMP-2 or periostin) and compare results with untreated animals. Our strong interdisciplinary team,
consisting of Dr. Anker (PI), Dr. DesJardins (biomechanical collaborator), Dr. Chip Norris (another targeted
COBRE PI developing osteoinductive periostin treatments), Dr. Tom Pace (orthopedic surgeon and clinical
mentor), and academic advisors Drs. Bob Latour, Roger Markwald, and Naren Vyavahare, will bring this
innovative technology from a novel spectroscopic tool to a noninvasive sensor to assess in vivo bone healing.
我们将开发一种非侵入性技术来测量矫形板的应变,以量化
骨折愈伤组织的机械硬度并评估骨诱导治疗的有效性。
美国每年治疗超过 2800 万例肌肉骨骼损伤,其中 200 万例骨折固定
具有大节段缺损的肢体骨折治疗起来尤其困难,而且发生率很高。
骨不连和翻修手术的一个关键目标是开发骨诱导治疗。
(例如,使用 BMP 或骨膜素)加速愈合并降低并发症发生率以帮助研究人员。
开发和优化这些再生疗法,并帮助医生评估个人的康复情况
对于患者来说,迫切需要量化体内骨折愈伤组织机械特性的技术。
尽管动物研究已经使用经皮连接的电阻应变计来测量减少的
愈合过程中,随着骨折愈伤组织变硬并逐渐分担负载,连接线会产生板应变
对于人类患者来说会有感染风险且不切实际。我们将开发一种新颖、优雅、低成本、
基于发光光谱的灵敏、非侵入性和高度通用的解决方案。
位移通常通过图像分析在体外测量,我们的方法是新颖的,因为我们执行
通过组织进行灵敏的测量,通过测量基本无背景的光谱变化,深入
可以使用便携式光谱仪进行穿透上转换发光的测量。
用于现场护理测量的系统,并且仪表具有低调的外形,可以简单地集成到或集成到
我们将通过测量作为负载函数的发光光谱来校准传感器 (4-
点弯曲和轴向压缩)在电镀胫骨等效样本中并评估应变敏感性
然后,我们将植入带有钛动态压缩板的各种组织厚度。
将发光应变计植入 4 组具有不同缺损尺寸的胫骨截骨术兔子模型中,以
我们将在 6 周内测量各组的种植体应变并进行比较。
生物工程和生物成像核心中的体内 �-CT 以及细胞、组织、
然后我们将对经过成骨治疗的兔子重复实验。
分子(BMP-2 或骨膜素)并将结果与未经治疗的动物进行比较,我们强大的跨学科团队,
由 Anker 博士(PI)、DesJardins 博士(生物力学合作者)、Chip Norris 博士(另一位目标
COBRE PI 骨诱导骨膜素治疗),Tom Pace 博士(骨科医生和开发临床
导师)和学术顾问 Bob Latour 博士、Roger Markwald 和 Naren Vyavahare 博士将带来这个
从新型光谱工具到无创传感器的创新技术,用于评估体内骨愈合。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFFREY N ANKER其他文献
JEFFREY N ANKER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFFREY N ANKER', 18)}}的其他基金
X-ray Visualized Implanted Sensor for Prosthetic Joint Infection (X-VIS-PJI)
用于假体关节感染的 X 射线可视化植入传感器 (X-VIS-PJI)
- 批准号:
10547368 - 财政年份:2022
- 资助金额:
$ 19.75万 - 项目类别:
Detecting and Monitoring Implant Infection Using X-ray Excited Luminescence Chemical Imaging (XELCI)
使用 X 射线激发发光化学成像 (XELCI) 检测和监测植入物感染
- 批准号:
9763460 - 财政年份:2016
- 资助金额:
$ 19.75万 - 项目类别:
Detecting and Monitoring Implant Infection Using X-ray Excited Luminescence Chemical Imaging (XELCI)
使用 X 射线激发发光化学成像 (XELCI) 检测和监测植入物感染
- 批准号:
9159723 - 财政年份:2016
- 资助金额:
$ 19.75万 - 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
- 批准号:
8882465 - 财政年份:2015
- 资助金额:
$ 19.75万 - 项目类别:
Telluride Science Research Meeting on "Frontiers in Biomagnetic Particles III", i
碲化物科学研究会议“生物磁性粒子前沿III”,i
- 批准号:
8597691 - 财政年份:2013
- 资助金额:
$ 19.75万 - 项目类别:
Investigating Mechanism of Intracellular Rotational Transport with Optical T
利用光 T 研究细胞内旋转运输的机制
- 批准号:
8368031 - 财政年份:2012
- 资助金额:
$ 19.75万 - 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
- 批准号:
7161313 - 财政年份:2005
- 资助金额:
$ 19.75万 - 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
- 批准号:
7323310 - 财政年份:2005
- 资助金额:
$ 19.75万 - 项目类别:
Next Generation Nano-prism based LSPR chemical sensors.
下一代基于纳米棱镜的 LSPR 化学传感器。
- 批准号:
7056609 - 财政年份:2005
- 资助金额:
$ 19.75万 - 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
- 批准号:
9069877 - 财政年份:
- 资助金额:
$ 19.75万 - 项目类别:
相似国自然基金
乳酸介导的组蛋白乳酸化调控哺乳动物主要合子基因组激活的机制研究
- 批准号:82301880
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
早期环境暴露对儿童哮喘免疫保护的动物实验和机制研究
- 批准号:82300031
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带森林土壤氮添加下微节肢动物对氮转化过程的调控
- 批准号:32360323
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
Slc39a13在哺乳动物铁代谢中的作用
- 批准号:32371226
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Fluoridated scaffolds for the treatment of critical-size bone defects
用于治疗临界尺寸骨缺损的氟化支架
- 批准号:
10633345 - 财政年份:2023
- 资助金额:
$ 19.75万 - 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
- 批准号:
10015497 - 财政年份:2020
- 资助金额:
$ 19.75万 - 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
- 批准号:
10557062 - 财政年份:2020
- 资助金额:
$ 19.75万 - 项目类别:
Heat-Treated Porous Fluorapatite Scaffolds with Adipose Derived Stem Cells for Bone Regeneration
热处理多孔氟磷灰石支架与脂肪干细胞用于骨再生
- 批准号:
10162333 - 财政年份:2020
- 资助金额:
$ 19.75万 - 项目类别:
Developing Luminescent Strain Sensors to Evaluate and Monitor Osteoinductive Ther
开发发光应变传感器来评估和监测骨感应热
- 批准号:
8882465 - 财政年份:2015
- 资助金额:
$ 19.75万 - 项目类别: