Structural instability and DNA rearrangements in the centromere
着丝粒的结构不稳定和 DNA 重排
基本信息
- 批准号:8840617
- 负责人:
- 金额:$ 31.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAneuploidyAttenuatedBerylliumBiological ModelsCellsCellular StressCellular biologyCentromereChromosomal InstabilityChromosomal translocationChromosome Fragile SitesChromosome SegregationChromosome StructuresChromosomesChromosomes, Human, Pair 21Chromosomes, Human, Pair 3Congenital AbnormalityDNADNA DamageDNA Repair PathwayDNA biosynthesisDNA repair proteinDataDefectDevelopmentDiseaseDown SyndromeDrug TargetingEpigenetic ProcessEuchromatinEventFission YeastFrequenciesGene RearrangementGenesGeneticGenetic ModelsGenomeGenome StabilityGenomic InstabilityGoalsHealthHeterochromatinHumanHuman DevelopmentInvestigationLeadLeftLifeLoss of HeterozygosityMaintenanceMalignant - descriptorMalignant NeoplasmsMeiosisMetabolismMethodsMicroscopyMitosisModelingModificationMolecular BiologyMutationOrganismPathway interactionsProcessProteinsRepetitive SequenceResolutionRisk FactorsRobertsonian TranslocationRoleSingle-Stranded DNAStressStructureSystemTechniquesTimeWorkYeast Model SystemYeastschromosome mutationexpectationgenome integrityhuman diseaseinsightlink proteinnovelpreventrepairedresponsesegregationsingle cell analysis
项目摘要
DESCRIPTION (provided by applicant): Chromosome instability (CIN) describes both disruptions of chromosome number such as aneuploidy or misegregation (nCIN) as well as disruptions of chromosome structure, such as chromosome translocations or rearrangements (sCIN). Both forms of CIN are associated with cancer. Progressive loss of genome integrity via CIN contributes to loss of heterozygosity, and can cause or exacerbate the disease. In addition to malignancy, disruptions in chromosome structure or number also contribute to defects in human development. For example, trisomy 21 causing Down syndrome can occur via chromosome mis-segregation (nCIN), but also from chromosome fusion via Robertsonian translocation(sCIN). Thus, the mechanisms that maintain chromosome structure and number are integral to human health at many levels. The centromere is essential for the normal segregation of chromosomes; thus, mutations affecting centromere function contribute to numerical CIN and aneuploidy. However, recent work suggests that the centromere is also vulnerable to chromosome rearrangements, fragmentation, and DNA damage, creating structural CIN. This also contributes to segregation defects. Importantly, the mechanisms that prevent sCIN in the centromere are largely unexplored. This proposal investigates structural instability associated with the centromere, specifically at the highly repetitive outer-repeat elements that are usually assembled into heterochromatin. It employs a tractable genetic system: the fission yeast S. pombe, which is well-established as a model for centromere function in higher cells. The project uses genetics, molecular biology, and novel cell biology methods, including live, single cell analysis and super-resolution microscopy, to examine the mechanisms that protect the centromere and preserve its integrity. The first Aim builds on extensive preliminary data to examine how the combination of replication defects and absence of heterochromatin increase the frequency of rearrangements. The second aim asks how proteins that are linked to centromere heterochromatin function in the DNA damage response either through centromere maintenance or effects on the euchromatin effects. The third Aim uses a novel four-chromosome fission yeast strain to study Robertsonian translocation. This is the first yeast model for this common chromosome rearrangement, and will examine evidence for centromere fusion and mechanisms for segregation and translocation in meiosis and mitosis. Together, these approaches will develop a strong mechanistic model for sCIN in the centromere with direct relevance to human health.
描述(由申请人提供):染色体不稳定性(CIN)描述了染色体数量的破坏,例如非整倍性或错误分离(nCIN),以及染色体结构的破坏,例如染色体易位或重排(sCIN)。两种形式的 CIN 都与癌症有关。 CIN 导致基因组完整性逐渐丧失,导致杂合性丧失,并可能导致或加剧疾病。除了恶性肿瘤之外,染色体结构或数量的破坏也会导致人类发育缺陷。例如,导致唐氏综合症的 21 三体可以通过染色体错误分离 (nCIN) 发生,也可以通过罗伯逊易位 (sCIN) 发生染色体融合。因此,维持染色体结构和数量的机制在许多层面上都是人类健康不可或缺的一部分。 着丝粒对于染色体的正常分离至关重要。因此,影响着丝粒功能的突变会导致 CIN 和非整倍体的数量。然而,最近的研究表明,着丝粒也容易受到染色体重排、断裂和 DNA 损伤的影响,从而产生结构性 CIN。这也会导致偏析缺陷。重要的是,防止着丝粒发生 sCIN 的机制很大程度上尚未被探索。 该提案研究了与着丝粒相关的结构不稳定性,特别是通常组装成异染色质的高度重复的外部重复元件。它采用了一个易于处理的遗传系统:裂殖酵母S. pombe,它是公认的高等细胞着丝粒功能的模型。该项目利用遗传学、分子生物学和新颖的细胞生物学方法,包括活体单细胞分析和超分辨率显微镜,来检查保护着丝粒并保持其完整性的机制。 第一个目标建立在广泛的初步数据的基础上,研究复制缺陷和异染色质缺失的组合如何增加重排的频率。第二个目标是询问与着丝粒异染色质相关的蛋白质如何通过着丝粒维持或影响常染色质效应在 DNA 损伤反应中发挥作用。第三个目标使用新型四染色体裂殖酵母菌株来研究罗伯逊易位。这是这种常见染色体重排的第一个酵母模型,并将检查着丝粒融合的证据以及减数分裂和有丝分裂中分离和易位的机制。这些方法将共同开发一个与人类健康直接相关的着丝粒 sCIN 的强大机制模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN L FORSBURG其他文献
SUSAN L FORSBURG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN L FORSBURG', 18)}}的其他基金
Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
- 批准号:
10595031 - 财政年份:2016
- 资助金额:
$ 31.33万 - 项目类别:
Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
- 批准号:
9893001 - 财政年份:2016
- 资助金额:
$ 31.33万 - 项目类别:
Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
- 批准号:
10404012 - 财政年份:2016
- 资助金额:
$ 31.33万 - 项目类别:
Mechanisms linking replication stress to genome instability in fission yeast
裂殖酵母中复制应激与基因组不稳定性的联系机制
- 批准号:
10205564 - 财政年份:2016
- 资助金额:
$ 31.33万 - 项目类别:
Structural instability and DNA rearrangements in the centromere
着丝粒的结构不稳定和 DNA 重排
- 批准号:
8720618 - 财政年份:2014
- 资助金额:
$ 31.33万 - 项目类别:
Checkpoints and Double Strand Breaks in S. Pombe Meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
8269785 - 财政年份:2009
- 资助金额:
$ 31.33万 - 项目类别:
Checkpoints and Double Strand Breaks in S. Pombe Meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
8499352 - 财政年份:2009
- 资助金额:
$ 31.33万 - 项目类别:
Checkpoints and double strand breaks in S. pombe meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
7846742 - 财政年份:2009
- 资助金额:
$ 31.33万 - 项目类别:
Checkpoints and Double Strand Breaks in S. Pombe Meiosis
粟酒裂殖酵母减数分裂中的检查点和双链断裂
- 批准号:
8131567 - 财政年份:2009
- 资助金额:
$ 31.33万 - 项目类别:
相似国自然基金
肿瘤非整倍体悖论的新机制
- 批准号:82372721
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非整倍体对卵巢癌免疫微环境的影响及其作为免疫治疗增效靶点的研究
- 批准号:82373401
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
生长激素通过JAK2/SHP2/ERK1/2通路降低老龄鼠卵母细胞非整倍体率的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纺锤体组装检查点功能异常在胶质瘤非整倍体形成中的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
非整倍体百合雌雄育性差异的细胞与分子机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
相似海外基金
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10538074 - 财政年份:2022
- 资助金额:
$ 31.33万 - 项目类别:
Preventing Age-Associated Oocyte Aneuploidy: Mechanisms Behind the Drosophila melanogaster Centromere Effect
预防与年龄相关的卵母细胞非整倍性:果蝇着丝粒效应背后的机制
- 批准号:
10730545 - 财政年份:2022
- 资助金额:
$ 31.33万 - 项目类别:
Structural instability and DNA rearrangements in the centromere
着丝粒的结构不稳定和 DNA 重排
- 批准号:
8720618 - 财政年份:2014
- 资助金额:
$ 31.33万 - 项目类别:
Mechanisms of arsenic-induced chromosomal instability and carcinogenesis
砷引起的染色体不稳定和致癌机制
- 批准号:
8250149 - 财政年份:2012
- 资助金额:
$ 31.33万 - 项目类别:
Mechanisms of arsenic-induced chromosomal instability and carcinogenesis
砷引起的染色体不稳定和致癌机制
- 批准号:
8958809 - 财政年份:2012
- 资助金额:
$ 31.33万 - 项目类别: