Nano and Microscale Molecular Machines for Innate Immune Sensing of Candida
用于念珠菌先天免疫传感的纳米和微型分子机器
基本信息
- 批准号:8984585
- 负责人:
- 金额:$ 42.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-15 至 2020-04-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActive Biological TransportAdoptedAffectAntifungal AgentsAutomobile DrivingBacteriaBindingBinding SitesBioinformaticsBiological AssayBiologyBiophysicsC-Type LectinsCandidaCandida albicansCandidiasisCaringCell WallCell membraneCommunicable DiseasesDataDendritic CellsDendritic cell activationDengueDetectionDevelopmentDiscriminationDiseaseDisseminated candidiasisElementsEventGenus MycobacteriumGeometryGlucansGoalsHost DefenseHumanImageImaging technologyImmuneImmunityImmunologic SurveillanceImmunotherapeutic agentIndividualInfectionIntegrin BindingKineticsLateralLeadLeishmaniaLeukocytesLifeLigandsLipidsMacrophage-1 AntigenMannansMasksMathematicsMeasurementMeasuresMediatingMembraneMembrane LipidsMethodsMissionModelingMolecular MachinesMycosesNanostructuresNational Institute of Allergy and Infectious DiseaseNatural ImmunityPTPRC genePTPRJ geneParasitesPatientsPatternPattern recognition receptorPharmaceutical PreparationsPhosphoric Monoester HydrolasesPolysaccharidesProcessPublic HealthResearchResolutionRoleSepsisSignal TransductionSiteStructureSurfaceTestingVariantVirusWorkanalytical methodbasebiophysical techniquescostcrosslinkdectin 1designfluorescence imagingimaging modalityimmune activationimmunogenicimmunogenicityinnovationinsightmicrobialmortalitynanonanobiologynanoscalenanostructurednew therapeutic targetnovel therapeuticspathogenphysical processpublic health relevancequantitative imagingreceptorresponsesegregationsensorspatiotemporal
项目摘要
DESCRIPTION (provided by applicant): During innate immune recognition of Candida, the organization of cell wall ligands and pattern recognition receptors is an important determinant of successful immune activation. The long-term goal of our research is to achieve a deeper understanding of the physical processes of receptor-ligand engagement that govern activation vs. evasion during innate immune fungal recognition. Our central hypothesis in this project is that nanoscale organization of immunogenic cell wall β-glucan and its receptor Dectin-1 provides a mechanistic basis for Dectin-1 signal initiation, and that spatiotemporal orchestration of antifungal is key to achieving adequate Dectin-1 responses. We anticipate that this work will provide mechanistic insight into how fungal pathogens conceal immunogenic ligands in attempt to escape detection and how pattern recognition receptors are coordinated to generate effective innate immunity against Candida. Grounded in previous results and our strong preliminary data, we will pursue this objective in three Specific Aims. In Aim 1, we will test the hypothesis that β
glucan "masking" in Candida species minimizes nanoscale exposure geometry of this immunogenic ligand to evade immune recognition. Our approach will involve nanoscopic measurements of β-glucan exposure and assays to assess the functional significance of β-glucan exposure geometry. In Aim 2, we will test the hypothesis that Dectin-1 nanodomain rearrangements upon glucan engagement drive a process of nanoscale segregation from regulatory phosphatases that is stabilized by lipid domain separation. In Aim 3, we will test the hypothesis that mannan/DC-SIGN interactions drive signaling that coordinates long-range active transport of Dectin-1 into host-pathogen contacts. This recruitment process is especially important for Dectin-1 to efficiently find sparse glucan exposures, leading to DC activation. This application features innovative application of high-resolution imaging technologies and quantitative image analytical methods to an important problem in infectious disease. Our studies will move the field beyond current models of fungal recognition mechanisms that are limited by lack of information on the nanoscopic scale, allowing a more detailed and accurate understanding of the physical mechanisms of innate immunity against Candida species pathogens and how they may evade immunity. This project joins the PI's demonstrated expertise in fungal immunity, membrane biophysics and quantitative fluorescence imaging together with an interdisciplinary team that brings additional expertise in surface fabrication methods, nanobiology, mathematics and image bioinformatics. We anticipate that our work will advance the field through fundamentally new discoveries in fungal immunity and new therapeutic strategies for Candidiasis.
描述(由适用提供):在念珠菌的先天免疫识别过程中,细胞壁配体和模式识别受体的组织是成功免疫反应的重要确定。我们研究的长期目标是更深入地理解受体 - 配体参与的物理过程,该过程在先天免疫识别过程中控制了激活与进化。我们在该项目中的中心假设是,免疫原性细胞壁β-葡聚糖及其受体Dectin-1的纳米级组织为Dectin-1信号启动提供了机械基础,并且抗真菌的时空管弦乐是实现足够的Dectin-1反应的关键。我们预计,这项工作将提供机械洞察力,了解真菌病原体如何掩盖免疫原性的配体以逃避检测,以及如何协调模式识别受体以产生有效的先天免疫学对念珠菌。基于先前的结果和我们强大的初步数据,我们将以三个特定目标追求这一目标。在AIM 1中,我们将测试β的假设
念珠菌物种中的葡聚糖“掩盖”可最大程度地减少这种免疫原性配体的纳米级暴露几何形状,以逃避免疫识别。我们的方法将涉及β-葡聚糖暴露的纳米镜测量,并主张β-葡聚糖暴露几何形状的功能意义。在AIM 2中,我们将检验以下假设:葡聚糖互动时Dectin-1纳米域重排驱动纳米级分离的过程,从脂质结构域分离稳定的调节磷酸酶。在AIM 3中,我们将检验以下假设:Mannan/DC-Sign相互作用驱动信号传导,该信号将Dectin-1的长距离主动转运置于宿主 - 病原体接触中。对于Dectin-1有效地发现稀疏的葡萄糖暴露,导致直流激活,这种募集过程尤为重要。该应用程序具有高分辨率成像技术的创新应用和定量图像分析方法在传染病中的重要问题上。我们的研究将使该领域超出当前的真菌识别机制模型,这些模型受纳米尺度上缺乏信息的限制,从而使对念珠菌物种病原体的先天免疫学的物理机制以及如何逃避免疫学的物理机制有了更详细,更准确的了解。该项目与PI在真菌免疫学,膜生物物理学和定量荧光成像方面展示了专业知识,以及一个跨学科团队,该团队在表面制造方法,纳米生物学,数学和图像生物信息学方面带来了更多专业知识。我们预计,我们的工作将通过真菌免疫和念珠菌病的新治疗策略的根本新发现来推进这一领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(3)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
AARON KURT NEUMANN其他文献
AARON KURT NEUMANN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('AARON KURT NEUMANN', 18)}}的其他基金
Membrane Distribution and Mobility of DC-SIGN
DC-SIGN 的膜分布和迁移率
- 批准号:
7230818 - 财政年份:2007
- 资助金额:
$ 42.04万 - 项目类别:
相似国自然基金
大肠杆菌基因工程菌发酵生产琥珀酸过程中CO2转运与固定的协同代谢调控
- 批准号:21176059
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
A Single Entity Method for Controlled Nucleation and Crystal Growth
控制成核和晶体生长的单一实体方法
- 批准号:
10720470 - 财政年份:2023
- 资助金额:
$ 42.04万 - 项目类别:
New Ultrastructural 3D Optical Imaging of Tumor Endothelium for Cancer Nanomedicine Development
用于癌症纳米药物开发的肿瘤内皮细胞新超微结构 3D 光学成像
- 批准号:
10334986 - 财政年份:2022
- 资助金额:
$ 42.04万 - 项目类别:
New Ultrastructural 3D Optical Imaging of Tumor Endothelium for Cancer Nanomedicine Development
用于癌症纳米药物开发的肿瘤内皮细胞新超微结构 3D 光学成像
- 批准号:
10573288 - 财政年份:2022
- 资助金额:
$ 42.04万 - 项目类别:
Mitochondrial injury interferes with endogenous renal repair in experimental renovascular disease
线粒体损伤干扰实验性肾血管疾病的内源性肾修复
- 批准号:
9805789 - 财政年份:2019
- 资助金额:
$ 42.04万 - 项目类别:
Regulation of Nuclear Import Through Importin Alpha Isoforms
通过导入α亚型来调节核进口
- 批准号:
10083745 - 财政年份:2018
- 资助金额:
$ 42.04万 - 项目类别: