Single Molecule Optically Resonant NanoTweezers for the study of Intracellular Me
用于细胞内 Me 研究的单分子光学共振纳米镊子
基本信息
- 批准号:8419345
- 负责人:
- 金额:$ 27.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBindingBiological AssayBiological AvailabilityCellsComplexCopperDestinationsDevelopmentDiseaseEnergy TransferEnvironmentEnzymesFamilial Amyotrophic Lateral SclerosisGoalsGrantHepatolenticular DegenerationImmobilizationIndividualIonsJointsKnowledgeLeadMediatingMenkes Kinky Hair SyndromeMetabolismMetalsMethodsMethylmalonyl-CoA MutaseMolecular ChaperonesNutrientOpticsPathologyPathway interactionsPhasePhysicsPhysiologicalPositioning AttributeProcessProtein DynamicsProteinsProtocols documentationRadialReactionSeriesSolutionsSpeedSystemTechniquesTechnologyTimeToxic effectUniversitiesVitamin B 12Wilson disease proteinWorkbasecobamamidecofactorinterestlaser tweezermacromoleculemeetingsnanometernanovesiclenovel strategiesparticlephotonicsprogramsprotein complexprotein protein interactionpublic health relevanceresearch studysingle moleculesmall moleculesuccesstooltrafficking
项目摘要
DESCRIPTION (provided by applicant): In this work we propose a joint project between the Erickson and Chen labs at Cornell University to develop a new approach to study the weak protein-protein interactions that govern intracellular metal and metal co-factor transport at the single molecule level. The approach involves the use of "Optically Resonant NanoTweezers" which we demonstrated during preceding exploratory R21 grant are capable of trapping proteins as small as a few nanometers, breaking through a long established barrier in optical physics. In addition to developing comprehensive information on the protein interaction dynamics for copper ion and vitamin B12 trafficking, through this program we will develop two general NanoTweezer based protocols for a quantitative single molecule florescence quenching assay (smFQ) and a single molecule florescence resonant energy transfer assay (smFRET) that can be applied to numerous other biophysical problems. Safe trafficking of metal ions and metal-containing cofactors inside cells to avoid toxicity is mediated by metallochaperones which deliver these reactive species to their target destinations while protecting them from adventitious
reactions. Abnormal function of this transport pathway can lead to diseases such as Wilson disease, Menkes disease, and familial amyotrophic lateral sclerosis. Despite its importance, very limited quantitative information is available on the biophysical mechanisms that enable this safe transfer or cause it to break down. A major difficulty in obtaining this information is the lak of a single molecule analysis tool which can simultaneously: (1) capture and suspend small molecules in free solution for an indefinite period time (2) effectively "concentrate" the set of molecules of interest to a point where weak protein-protein interactions can be studied and (3) allow rapid modulation of the external environmental conditions. One potential method by which the above goals could be achieved is through the use of optical tweezers. Fundamentally however, existing optical confinement techniques are limited by diffraction which places a lower bound on the size of dielectric target which can be trapped to about 100nm. With the optically resonant nanotweezer technology we have shown that this force can be enhanced 1000's of times so as to trap proteins (including the Wilson disease proteins used here) as small as a few nanometers. In this proposal, we show how we can adapt this technology to (1) non-invasively capture and suspend individual macromolecules in free solution (2) guide additional molecules to the capture region so that interactions can be observed and (3) maintain captured particles in position while the suspending solution is changed. When applied to intracellular metal transport these capabilities can speed up the process for discovering how metalochaperones respond to different environmental conditions and ultimately what leads to the pathologies listed above.
描述(由申请人提供):在这项工作中,我们提出了康奈尔大学埃里克森和陈实验室之间的一个联合项目,开发一种新方法来研究控制细胞内金属和金属辅因子转运的弱蛋白质-蛋白质相互作用。分子水平。该方法涉及使用“光学共振纳米镊子”,我们在之前的探索性 R21 资助中证明了该镊子能够捕获小至几纳米的蛋白质,突破了光学物理学中长期存在的障碍。除了开发有关铜离子和维生素 B12 运输的蛋白质相互作用动力学的全面信息外,通过该计划,我们还将开发两种基于 NanoTweezer 的通用方案,用于定量单分子荧光猝灭测定 (smFQ) 和单分子荧光共振能量转移测定(smFRET)可应用于许多其他生物物理问题。金属离子和含金属辅助因子在细胞内的安全运输以避免毒性是由金属伴侣介导的,金属伴侣将这些活性物质传递到目标目的地,同时保护它们免受外来物质的影响
反应。该转运途径的功能异常可导致威尔逊病、门克斯病和家族性肌萎缩侧索硬化症等疾病。尽管它很重要,但关于实现这种安全转移或导致其分解的生物物理机制的定量信息非常有限。获得此信息的一个主要困难是缺乏能够同时执行以下操作的单分子分析工具:(1) 在自由溶液中无限期地捕获和悬浮小分子 (2) 有效地将感兴趣的分子集“浓缩”到可以研究弱蛋白质-蛋白质相互作用的点,并且(3)允许快速调节外部环境条件。实现上述目标的一种潜在方法是使用光镊。然而,从根本上讲,现有的光学限制技术受到衍射的限制,衍射对可捕获的电介质目标的尺寸设定了下限,约为 100nm。通过光学共振纳米镊子技术,我们已经证明这种力可以增强数千倍,从而捕获小至几纳米的蛋白质(包括此处使用的威尔逊病蛋白质)。在本提案中,我们展示了如何采用该技术来(1)非侵入性地捕获并悬浮游离溶液中的单个大分子(2)将其他分子引导至捕获区域,以便可以观察到相互作用以及(3)维持捕获的颗粒更换悬浮液时就位。当应用于细胞内金属运输时,这些能力可以加快发现金属伴侣如何响应不同环境条件以及最终导致上述病理的过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Carl Erickson其他文献
David Carl Erickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Carl Erickson', 18)}}的其他基金
Artificial Intelligence and Precision Nutrition Training Program
人工智能与精准营养培训项目
- 批准号:
10752485 - 财政年份:2023
- 资助金额:
$ 27.65万 - 项目类别:
Point of Care Technologies for Nutrition, Infection, and Cancer for Global Health (PORTENT)
全球健康营养、感染和癌症护理点技术 (PORTENT)
- 批准号:
10714506 - 财政年份:2023
- 资助金额:
$ 27.65万 - 项目类别:
Point of Care Technologies for Nutrition, Infection, and Cancer for Global Health (PORTENT)
全球健康营养、感染和癌症护理点技术 (PORTENT)
- 批准号:
10714507 - 财政年份:2023
- 资助金额:
$ 27.65万 - 项目类别:
Paper-COVID - Platform for High-throughput SARS-CoV-2 Screening and Contact Tracing
Paper-COVID - 高通量 SARS-CoV-2 筛查和接触者追踪平台
- 批准号:
10196383 - 财政年份:2021
- 资助金额:
$ 27.65万 - 项目类别:
Development of a Point of Care Multiplexed Diagnostic Platform to Target Anemia and Micronutrient Deficiencies
开发针对贫血和微量营养素缺乏症的护理多重诊断平台
- 批准号:
9542788 - 财政年份:2017
- 资助金额:
$ 27.65万 - 项目类别:
FeverPhone: Point of Care Diagnosis of Acute Febrile Illness using a Mobile Device
FeverPhone:使用移动设备对急性发热性疾病进行护理点诊断
- 批准号:
9301546 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
Early Stage Diagnosis of Kaposi's Sarcoma in Limited Resource Settings using KS-Detect
使用 KS-Detect 在有限资源环境中对卡波西肉瘤进行早期诊断
- 批准号:
9031275 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
FeverPhone: Point of Care Diagnosis of Acute Febrile Illness using a Mobile Device
FeverPhone:使用移动设备对急性发热性疾病进行护理点诊断
- 批准号:
9008392 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
Early Stage Diagnosis of Kaposi's Sarcoma in Limited Resource Settings using KS-Detect
使用 KS-Detect 在有限资源环境下对卡波西肉瘤进行早期诊断
- 批准号:
10018466 - 财政年份:2016
- 资助金额:
$ 27.65万 - 项目类别:
相似国自然基金
帽结合蛋白(cap binding protein)调控乙烯信号转导的分子机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
利用分子装订二硫键新策略优化改造α-芋螺毒素的研究
- 批准号:82104024
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CST蛋白复合体在端粒复制中对端粒酶移除与C链填补调控的分子机制研究
- 批准号:31900521
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Wdr47蛋白在神经元极化中的功能及作用机理的研究
- 批准号:31900503
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
ID1 (Inhibitor of DNA binding 1) 在口蹄疫病毒感染中作用机制的研究
- 批准号:31672538
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Causes and Downstream Effects of 14-3-3 Phosphorylation in Synucleinopathies
突触核蛋白病中 14-3-3 磷酸化的原因和下游影响
- 批准号:
10606132 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Role of Frizzled 5 in NK cell development and antiviral host immunity
Frizzled 5 在 NK 细胞发育和抗病毒宿主免疫中的作用
- 批准号:
10748776 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
The mechanism of CELF1 upregulation and its role in the pathogenesis of Myotonic Dystrophy Type 1
CELF1上调机制及其在强直性肌营养不良1型发病机制中的作用
- 批准号:
10752274 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 27.65万 - 项目类别:
Dissecting the Integrated Stress Response in tRNA Synthetase-Associated Neuropathies
剖析 tRNA 合成酶相关神经病的综合应激反应
- 批准号:
10647281 - 财政年份:2023
- 资助金额:
$ 27.65万 - 项目类别: