AN OPEN RESOURCE TO ADVANCE COMPUTER-AIDED DRUG DESIGN
推进计算机辅助药物设计的开放资源
基本信息
- 批准号:8756082
- 负责人:
- 金额:$ 72.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaAddressAffinityArchivesBackBenchmarkingBindingBinding ProteinsBiochemicalBiological AssayBlindedCalorimetryCollaborationsCollectionCommunitiesComputational algorithmComputer AssistedComputersComputing MethodologiesCoupledDataData CollectionData QualityData SetDatabasesDevelopmentDiseaseDockingDrug DesignDrug IndustryEducation and OutreachEducational workshopExerciseGenbankGoalsIn VitroIndustryIntellectual PropertyInternetLaboratoriesLaboratory ResearchLigandsMeasurementMediationMethodologyMethodsModelingOutcomePharmaceutical PreparationsPharmacologic SubstancePhysicsProblem SolvingProcessPropertyProteinsPubChemQuality of lifeResearchResearch ContractsResearch PersonnelResourcesSafetyScientistSite-Directed MutagenesisSourceSpeedSumSystemTechnologyTestingThermodynamicsTimeLineTraining ActivityTrustUnited States National Institutes of HealthUniversitiesValidationVisionWorkbaseblindcostcost effectivedata managementdesigndrug discoveryexperiencefederated computingflexibilityimprovedinnovationinsightinterestmeetingsmethod developmentmolecular recognitionnoveloutreachprotein foldingpublic health relevancerepositoryresearch studyscreeningsmall moleculetooluser-friendlyweb site
项目摘要
DESCRIPTION (provided by applicant): The application of computer-aided drug design (CADD) to drug discovery has yet to reach its full potential despite the broad use of these methods across academia and the pharmaceutical industry and tremendous progress in CPU speeds over the last 35 years. Although the existing computational methods are useful, there are serious limitations in the ability to predict small molecule ligand-protein target interactions It is recognized that if these obstacles can be overcome, the ability to predict these interactions accurately would have a dramatic and positive outcome through a reduction in small molecule drug discovery timelines and potentially toxic off-target effects, thereby reducing overall development costs and increasing safety of new medications. The computer-aided drug design community is working to develop improved methods and generally agrees that further progress requires greater public availability of high quality, compelling and "problem" specific protein-ligand datasets for challenging, improving and validating computational algorithms. The NIH seeks to solve this problem through the issuance of RFA GM-08-008, "Drug Docking and Screening Data Resource". We submit a proposal to establish a publicly available Drug Design Data Resource (D3R) to meet the goals of this RFA. We propose three innovative CADD community oriented Aims. First we will engage our pharmaceutical partners to identify, curate and enhance 6-10 protein- ligand datasets per year. This work will build on the existing CSAR project both through rapid incorporation of their datasets and perpetuating their academic-industry relationships. An innovative extension beyond CSAR will be longer tenures at pharmaceutical companies to allow further exchange of ideas and testing of data with various workflows, workflows that can be made publicly available. We will engage contract research organizations for compound synthesis and in vitro biochemical assays and our academic partners for novel thermodynamic data. Second, we will use these new datasets as a basis for engaging the CADD community in quarterly blind prediction exercises, focusing on binding mode and affinity predictions for ligand-protein interactions. This blind challenge approach has proven highly fruitful in other fields, e.g. protein folding. Workshops will be held to share resuls and discuss their implications. Third, we will develop a database and web presence to archive, share, and integrate these data, as well as workflows submitted by users to enable replication and dissemination of their methods. This community-oriented effort will establish a powerful new platform for advancing the state of the art in computer-aided drug design.
描述(由申请人提供):尽管在学术界广泛使用了这些方法,但计算机辅助药物设计(CADD)在药物发现中的应用尚未发挥全部潜力35年。尽管现有的计算方法很有用,但预测小分子配体蛋白靶靶点的能力存在严重的局限小分子药物发现时间表的减少和潜在的有毒脱靶效应,从而降低了整体开发成本并提高了新药物的安全性。计算机辅助的药物设计界正在努力开发改进的方法,并且普遍认为,进一步的进步需要更大的公众可用性,更具吸引力和“问题”特定的蛋白质配体数据集,以挑战,改进和验证计算算法。 NIH试图通过发行RFA GM-08-008“药物对接和筛查数据资源”来解决此问题。我们提出一项提案,以建立公开可用的药物设计数据资源(D3R),以实现此RFA的目标。我们提出了三个创新的CADD社区目标。首先,我们将与我们的药物合作伙伴进行识别,策划和增强每年6-10个蛋白质数据集。这项工作将在现有的CSAR项目基础上通过快速合并其数据集以及使其学术行业关系永存。 CSAR以外的创新扩展将是制药公司更长的任期,以便进一步交换想法并使用各种工作流程,可以公开可用的工作流程进行数据测试。我们将与合同研究组织一起进行复合合成和体外生化分析,以及我们的学术合作伙伴以获取新型热力学数据。其次,我们将使用这些新数据集作为使CADD社区参与季度盲目预测练习的基础,重点关注装订模式和配体蛋白质相互作用的亲和力预测。这种盲目挑战方法已被证明在其他领域,例如蛋白质折叠。研讨会将举行,以分享重新调整并讨论其含义。第三,我们将开发一个数据库和Web的影响力来存档,共享和集成这些数据,以及用户提交的工作流程以启用其方法的复制和传播。这项面向社区的工作将建立一个强大的新平台,以推动计算机辅助药物设计中的最新水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rommie E Amaro其他文献
Rommie E Amaro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rommie E Amaro', 18)}}的其他基金
Multiscale Computational Microscopy of HIV-1
HIV-1 的多尺度计算显微镜
- 批准号:
10756808 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
A MULTISCALE APPROACH TO TARGET THE ACHILLES HEEL OF P53 CANCER MUTANTS
针对 P53 癌症突变体致命弱点的多尺度方法
- 批准号:
10391499 - 财政年份:2019
- 资助金额:
$ 72.84万 - 项目类别:
A MULTISCALE APPROACH TO TARGET THE ACHILLES HEEL OF P53 CANCER MUTANTS
针对 P53 癌症突变体致命弱点的多尺度方法
- 批准号:
9906241 - 财政年份:2019
- 资助金额:
$ 72.84万 - 项目类别:
Towards a Structural Systems Biology Approach for Anti-Trypanosomal Therapeutics
抗锥虫治疗的结构系统生物学方法
- 批准号:
7791099 - 财政年份:2010
- 资助金额:
$ 72.84万 - 项目类别:
Towards a Structural Systems Biology Approach for Anti-Trypanosomal Therapeutics
抗锥虫治疗的结构系统生物学方法
- 批准号:
8122149 - 财政年份:2010
- 资助金额:
$ 72.84万 - 项目类别:
A Structural Systems Biology Approach to Drug Discovery
药物发现的结构系统生物学方法
- 批准号:
8798517 - 财政年份:2010
- 资助金额:
$ 72.84万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
2023 International Society for Vaccines (ISV) Annual Congress, October 22-25, Lausanne, Switzerland
2023 年国际疫苗协会 (ISV) 年会,10 月 22 日至 25 日,瑞士洛桑
- 批准号:
10754840 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
Promoting immunity against acute myeloid leukemia through Fc effector-optimized antibody inhibitory of MICA/B shedding
通过 Fc 效应子优化抗体抑制 MICA/B 脱落,增强对急性髓系白血病的免疫力
- 批准号:
10585146 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
Chronic Graft-Versus-Host Disease Biomarkers: Prediction of Resistance to Therapy
慢性移植物抗宿主病生物标志物:治疗耐药性的预测
- 批准号:
10751970 - 财政年份:2023
- 资助金额:
$ 72.84万 - 项目类别:
Developing three-dimensional antisense oligonucleotide drugs against COVID-19
开发针对COVID-19的三维反义寡核苷酸药物
- 批准号:
10645137 - 财政年份:2021
- 资助金额:
$ 72.84万 - 项目类别: