Signaling and Targeting of 6-Phosphogluconate Dehydrogenase in Human Cancers
人类癌症中 6-磷酸葡萄糖酸脱氢酶的信号传导和靶向
基本信息
- 批准号:8630691
- 负责人:
- 金额:$ 33.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-15 至 2019-02-28
- 项目状态:已结题
- 来源:
- 关键词:5&apos-AMP-activated protein kinase6-phosphogluconateAcetyl-CoA CarboxylaseAcetylationAcetylcysteineAnabolismAttenuatedB-Cell Acute Lymphoblastic LeukemiaBackBindingBioenergeticsBone Marrow TransplantationCancer cell lineCell ProliferationCell SurvivalCellsCervical Intraepithelial NeoplasiaClinical TreatmentColorectal CancerComplexDNA biosynthesisDataDevelopmentEnzymesEvaluationH1299HomeostasisHumanIn VitroK-562LaboratoriesLinkLysineMalignant NeoplasmsMalignant neoplasm of lungMetabolicMetabolic PathwayMetabolismModelingMusNADPNormal CellNucleotide BiosynthesisNude MiceOxidation-ReductionPathogenesisPathway interactionsPatientsPentosephosphate PathwayPharmaceutical PreparationsPhosphogluconate DehydrogenasePhosphorylationPhosphorylation InhibitionProductionProtein Kinase InhibitorsRNARNA biosynthesisReducing AgentsRegulationReportingResistanceRoleSTK11 geneSignal TransductionSignaling MoleculeTestingTissuesToxic effectXenograft procedurebasecancer cellin vivoinhibitor/antagonistleukemialipid biosynthesismimeticsmutantnext generationnovelprotein kinase inhibitorpublic health relevanceribulose 5-phosphatesmall hairpin RNAsmall moleculetherapeutic targetthyroid neoplasmtumortumor growthtumor metabolism
项目摘要
Abstract:
How cancer cells coordinate anabolic biosynthesis and redox homeostasis remains largely unknown. In normal
cells, 6-phosphogluconate dehydrogenase (6PGD), an enzyme in the oxidative pentose phosphate pathway
(PPP), converts 6-phosphogluconate (6-PG) to ribulose 5-phosphate (Ru-5-P) and produces NADPH.
Upregulated 6PGD activity has been reported in several cancer tissues including colorectal cancers, cervical
intraepithelial neoplasia and thyroid tumors, as well as leukemia (our unpublished data). However, how 6PGD is
activated in human cancers and whether 6PGD activity is important in pathogenesis and tumor development
remain unknown. We found that acetylation at K76 and K294 enhances 6PGD activation and is commonly
observed in diverse human cancer cells. Stable knockdown of 6PGD in cancer cells results in reduced oxidative
PPP flux and RNA/DNA biosynthesis. Surprisingly, 6PGD knockdown also causes decreased NADPH/NADP+
ratio, suggesting an important role for 6PGD in NADPH production that cannot be compensated by other
NADPH-producing enzymes. Moreover, cancer cells with 6PGD knockdown show elevated ROS levels and
aberrant biosynthesis, leading to reduced cell proliferation and tumor growth in xenograft nude mice. We next
screened and identified Physcion as a novel, selective small molecule 6PGD inhibitor. Treatment with Physcion
or its derivative S3 effectively inhibits cell proliferation in diverse human cancer cells with no off-target effect.
Physcion and S3 also effectively inhibit cell viability and proliferation of primary leukemia cells from human
patients with minimal toxicity. Furthermore, S3 significantly reduces tumor growth in xenograft nude mice
subcutaneously injected with human H1299 lung cancer or K562 leukemia cells with minimal toxicity in vivo.
Thus, we hypothesize that lysine acetylation enhances 6PGD activation, which promotes cancer cell proliferation
and tumor growth; 6PGD thus represents a novel anti-cancer target in clinical treatment. Intriguingly, we also
found that knockdown of 6PGD results in decreased intracellular levels of Ru-5-P (6PGD product), leading to
activation of AMP-activated protein kinase (AMPK), which subsequently inhibits acetyl-CoA carboxylase 1
(ACC1) and consequently lipogenesis. Thus, in addition to the well-established connection between PPP and
nucleotide biosynthesis, 6PGD provides a novel link between PPP, AMPK signaling and lipogenesis, which,
along with the surprisingly crucial role for 6PGD in NADPH production and redox homeostasis, is important for
cancer metabolism and tumor growth. We will test these hypotheses using human lung cancer and leukemias
(CML, AML and B-ALL) as platforms. Three Specific Aims were proposed (1) To examine whether lysine
acetylation is important for 6PGD activation and promotion of cancer cell metabolism and tumor growth; (2) To
explore how 6PGD links PPP, AMPK signaling and lipogenesis to coordinate with redox regulation in promoting
cancer cell metabolism and tumor growth; and (3) To validate 6PGD as an anti-leukemia target in treatment of
human leukemia cells in vitro and in vivo using 6PGD small molecule inhibitors developed in our laboratory.
抽象的:
癌细胞如何协调合成代谢生物合成和氧化还原稳态仍然很大程度上未知。正常情况下
细胞,6-磷酸葡萄糖酸脱氢酶 (6PGD),氧化戊糖磷酸途径中的一种酶
(PPP),将 6-磷酸葡萄糖酸 (6-PG) 转化为 5-磷酸核酮糖 (Ru-5-P) 并产生 NADPH。
据报道,多种癌症组织中 6PGD 活性上调,包括结直肠癌、宫颈癌
上皮内瘤变和甲状腺肿瘤,以及白血病(我们未发表的数据)。然而,6PGD 是如何
在人类癌症中被激活以及 6PGD 活性在发病机制和肿瘤发展中是否重要
仍然未知。我们发现 K76 和 K294 处的乙酰化增强了 6PGD 的激活,并且通常
在多种人类癌细胞中观察到。癌细胞中 6PGD 的稳定敲低导致氧化减少
PPP 通量和 RNA/DNA 生物合成。令人惊讶的是,6PGD 敲除也会导致 NADPH/NADP+ 降低
比率,表明 6PGD 在 NADPH 产生中发挥着重要作用,而其他作用无法弥补
产生 NADPH 的酶。此外,6PGD 敲低的癌细胞显示出 ROS 水平升高,并且
生物合成异常,导致异种移植裸鼠细胞增殖和肿瘤生长减少。我们接下来
筛选并鉴定大黄素甲醚是一种新型选择性小分子 6PGD 抑制剂。大黄素甲醚治疗
或其衍生物S3可有效抑制多种人类癌细胞的细胞增殖,且无脱靶效应。
大黄素甲醚和 S3 还可以有效抑制人原发性白血病细胞的细胞活力和增殖。
患者的毒性最小。此外,S3 显着降低异种移植裸鼠的肿瘤生长
皮下注射人H1299肺癌或K562白血病细胞,体内毒性极小。
因此,我们假设赖氨酸乙酰化增强 6PGD 激活,从而促进癌细胞增殖
和肿瘤生长;因此,6PGD代表了临床治疗中的一个新的抗癌靶点。有趣的是,我们还
发现 6PGD 的敲低会导致细胞内 Ru-5-P(6PGD 产品)水平降低,从而导致
激活 AMP 激活蛋白激酶 (AMPK),随后抑制乙酰辅酶 A 羧化酶 1
(ACC1) 以及随后的脂肪生成。因此,除了 PPP 和 PPP 之间建立良好的联系外,
核苷酸生物合成,6PGD 提供了 PPP、AMPK 信号传导和脂肪生成之间的新联系,
6PGD 在 NADPH 产生和氧化还原稳态中发挥着令人惊讶的关键作用,对于
癌症代谢和肿瘤生长。我们将使用人类肺癌和白血病来测试这些假设
(CML、AML 和 B-ALL)作为平台。提出了三个具体目标(1)检查赖氨酸是否
乙酰化对于6PGD激活、促进癌细胞代谢和肿瘤生长很重要; (2) 至
探索 6PGD 如何连接 PPP、AMPK 信号传导和脂肪生成,以协调氧化还原调节,促进
癌细胞代谢和肿瘤生长; (3) 验证 6PGD 作为抗白血病靶点治疗
使用我们实验室开发的 6PGD 小分子抑制剂对人类白血病细胞进行体外和体内研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jing Chen其他文献
Jing Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jing Chen', 18)}}的其他基金
The role of EMT transcription factor Zeb2 in fetal hematopoiesis
EMT转录因子Zeb2在胎儿造血中的作用
- 批准号:
10604587 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
Dietary trans-vaccenic acid enhances anti-tumor immunity
膳食反式牛油酸增强抗肿瘤免疫力
- 批准号:
10562449 - 财政年份:2022
- 资助金额:
$ 33.52万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK
氧化戊糖磷酸途径调节 AMPK
- 批准号:
10381359 - 财政年份:2021
- 资助金额:
$ 33.52万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10028816 - 财政年份:2020
- 资助金额:
$ 33.52万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10471262 - 财政年份:2020
- 资助金额:
$ 33.52万 - 项目类别:
Mathematical modeling of spatiotemporal and mechanical processes in cellular functions
细胞功能时空和机械过程的数学建模
- 批准号:
10237345 - 财政年份:2020
- 资助金额:
$ 33.52万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10305369 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
Signaling and Targeting of 6-Phosphogluconate Dehydrogenase in Human Cancers
人类癌症中 6-磷酸葡萄糖酸脱氢酶的信号传导和靶向
- 批准号:
9000567 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10580662 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
Oxidative pentose phosphate pathway regulates AMPK homeostasis by balancing opposing LKB1 and PP2A
氧化戊糖磷酸途径通过平衡 LKB1 和 PP2A 来调节 AMPK 稳态
- 批准号:
10524081 - 财政年份:2014
- 资助金额:
$ 33.52万 - 项目类别:
相似国自然基金
AMPK通过调控Smurf1的SUMO化抑制创伤性异位骨化的研究
- 批准号:31900852
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
血管微环境中内皮细胞AMPK抑制心肌纤维化的功能与机制研究
- 批准号:81800273
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于AMPK-FXR-BSEP介导的齐墩果酸所致胆汁淤积性肝损伤作用机制研究
- 批准号:81760678
- 批准年份:2017
- 资助金额:35.0 万元
- 项目类别:地区科学基金项目
基于AMPK信号通路研究菝葜黄酮调控脂类代谢分子机制
- 批准号:81760157
- 批准年份:2017
- 资助金额:32.0 万元
- 项目类别:地区科学基金项目
PRKAG2基因自发新突变K485E引起心脏电生理异常的机制研究
- 批准号:81400259
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Decoding AMPK-dependent regulation of DNA methylation in lung cancer
解码肺癌中 DNA 甲基化的 AMPK 依赖性调节
- 批准号:
10537799 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
Role of SIK3 in PKA/mTORC1 regulation of adipose browning
SIK3 在 PKA/mTORC1 调节脂肪褐变中的作用
- 批准号:
10736962 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
Regulation of CSE-Derived Hydrogen Sulfide in the Heart
CSE 衍生的硫化氢在心脏中的调节
- 批准号:
10659832 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
Cell-free hemoglobin-oxidized LDL-LOX-1 axis and microvascular hyperpermeability during sepsis
脓毒症期间无细胞血红蛋白氧化的 LDL-LOX-1 轴和微血管通透性过高
- 批准号:
10739620 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别:
Nutrient-sensor O-GlcNAc Transferase Regulation of Autophagy in Homeostatis of Pancreatic Beta-cell Mass and Function
营养传感器 O-GlcNAc 转移酶对胰腺 β 细胞质量和功能稳态中自噬的调节
- 批准号:
10907874 - 财政年份:2023
- 资助金额:
$ 33.52万 - 项目类别: