Brain Connectivity Supporting Language Recovery in Aphasia
大脑连接支持失语症的语言恢复
基本信息
- 批准号:8748269
- 负责人:
- 金额:$ 35.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-10 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:AdvocateAffectAnomiaAphasiaAphasiologyAreaBehavioralBiological PreservationBrainBrain InjuriesBrain MappingCerebral cortexChronicClinicalCounselingDataDiffusion Magnetic Resonance ImagingDiseaseEmployee StrikesExhibitsGoalsImageImpairmentInjuryInterruptionLanguageLast NameLeftLeft cerebral hemisphereLesionLocationMagnetic ResonanceMagnetic Resonance ImagingMapsMeasuresMethodologyMethodsNamesNecrosisNecrotic LesionNeurologistNeurologyOutcomePathologistPatientsPersonsPlayPositioning AttributePredictive ValueProcessQuality of lifeRecoveryRecruitment ActivityRehabilitation therapyResearch InfrastructureRetrievalRoleSemanticsSeveritiesSpeechSpeech TherapyStatistical ModelsStrokeStructureTechniquesTemporal LobeTestingTreatment EffectivenessTreatment outcomeUnited StatesWorkalternative treatmentbasebehavior measurementcost effectivedisabilityfrontal lobegray matterimprovedinstrumentlanguage processinglexicalmultidisciplinaryneurobiological mechanismneuroimagingphonologypreventprospectivepublic health relevancerelating to nervous systemtooltreatment trialwhite matter
项目摘要
DESCRIPTION (provided by applicant): Aphasia, an impairment in language processing, is a common disorder associated with stroke. The hallmark deficit of aphasia is the inability to name objects or people (anomia). Many patients with chronic aphasia can improve with naming therapy, but treatment is not universally effective. If the reason for differences in treatment effectiveness were better understood, an instrument could be developed to identify the patients who have the greatest potential to improve. Furthermore, a better understanding of the predictors for language recovery could provide crucial information about the mechanisms supporting brain plasticity during rehabilitation. Our group has previously demonstrated that naming improvements due to therapy are primarily associated with functional modulation of the cerebral cortex in the left hemisphere. It follows that structural damage to cortical regions in th left hemisphere is a limiting factor for recovery. Nonetheless, preservation of the cerebral cortex
cannot fully predict therapy-induced recovery. Some patients with apparently intact cortical structures are not able to recruit these areas during therapy and fail to improve. This apparent inconsistency may be related to limitations in brain mapping techniques and our hitherto inability to define the extent and location of brain damage after stroke. Specifically, cortical regions may be disconnected as a result of white matter loss. Conventional assessment tools underappreciate cortical disconnection, but it likely plays an important role in naming recovery because it prevents recruitment of spared cortical areas during therapy. With new methodological improvements in brain mapping, this hypothesis can be directly tested. It is now possible to chart neural connections in the entire brain (the brain connectome) using magnetic resonance diffusion tensor imaging. For this project, we developed optimized connectome-mapping techniques to assess neural connectivity in patients with aphasia due to a previous stroke. We aim to investigate the impacts of cortical necrosis and cortical disconnection on chronic naming impairments and treatment-induced naming recovery. This proposal leverages high-quality imaging and behavioral data from a large prospective treatment trial in aphasia to accomplish our goals in a cost-effective manner. We will assess specific regions in the left hemisphere that have been associated with lexical-semantic retrieval and phonological processing during naming. We will also create a clinical scale for the prediction of treatment outcome based on a personalized assessment of cortical damage and cortical connectivity, advocating for each patient to be treated according to their individualized brain network profile.
描述(由申请人提供):语言处理中的障碍是失语症,是与中风相关的常见疾病。失语症的标志性赤字是无法命名对象或人(异常)。许多慢性失语症患者可以通过命名疗法改善,但治疗并非普遍有效。如果更好地理解治疗效率差异的原因,可以开发一种工具来确定具有最大改善潜力的患者。此外,对语言恢复的预测指标的更好理解可以提供有关支持脑恢复过程中大脑可塑性的机制的重要信息。我们的小组先前已经证明,由于治疗而命名的改进主要与左半球大脑皮层的功能调节有关。因此,左半球对皮质区域的结构损害是恢复的限制因素。但是,保存大脑皮层
无法完全预测治疗引起的康复。一些看似完整的皮质结构的患者在治疗过程中无法招募这些区域,并且无法改善。这种明显的不一致可能与大脑映射技术的局限性以及我们迄今无法定义中风后脑损伤的程度和位置有关。具体而言,由于白质损失,皮层区域可能会断开连接。常规的评估工具不足以使皮质断开连接,但它可能在命名恢复中起着重要作用,因为它可以防止治疗过程中富裕的皮质区域招募。随着大脑映射的新方法学改进,可以直接检验该假设。现在可以使用磁共振扩散张量成像来绘制整个大脑(大脑连接组)中的神经连接。对于这个项目,我们开发了优化的连接映射技术,以评估由于先前中风而失语症患者的神经连通性。我们旨在研究皮质坏死和皮质断开对慢性命名障碍和治疗引起的命名恢复的影响。该建议利用大型前瞻性治疗试验中的高质量成像和行为数据,以具有成本效益的方式实现我们的目标。我们将评估左半球的特定区域,这些区域与命名过程中词汇 - 语义检索和语音处理有关。我们还将基于对皮质损伤和皮质连通性的个性化评估来预测治疗结果的临床量表,并主张每个患者根据其个性化的大脑网络概况进行治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leonardo F Bonilha其他文献
Leonardo F Bonilha的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leonardo F Bonilha', 18)}}的其他基金
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
9811129 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10241330 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10470912 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10649724 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10619937 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
- 批准号:
10005301 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
- 批准号:
10158551 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
- 批准号:
9751025 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
相似国自然基金
儿童脂肪、肌肉构成及相互作用对心血管代谢异常发生风险的影响及机制研究
- 批准号:82373589
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
组织细胞外基质异常对机体肿瘤免疫监视效应的影响及作用机制
- 批准号:32370839
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高空冷涡对西北太平洋台风路径异常的影响研究
- 批准号:42305003
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
恶劣天气影响下的接触网悬挂系统稀疏及细粒度异常状态检测方法
- 批准号:52362048
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高温合金涡轮叶片异常晶粒形成机制及其对力学性能的影响
- 批准号:52303394
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling
通过适应性建模将补充学习原则融入失语症康复中
- 批准号:
10366326 - 财政年份:2022
- 资助金额:
$ 35.04万 - 项目类别:
Targeting language-specific and executive-control networks with transcranial direct current stimulation in aphasic AD
通过经颅直流电刺激治疗失语性 AD,针对语言特异性和执行控制网络
- 批准号:
10701784 - 财政年份:2022
- 资助金额:
$ 35.04万 - 项目类别:
Targeting language-specific and executive-control networks with transcranial direct current stimulation in aphasic AD
通过经颅直流电刺激治疗失语性 AD,针对语言特异性和执行控制网络
- 批准号:
10522359 - 财政年份:2022
- 资助金额:
$ 35.04万 - 项目类别:
Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling
通过适应性建模将补充学习原则融入失语症康复中
- 批准号:
10573220 - 财政年份:2022
- 资助金额:
$ 35.04万 - 项目类别:
Phase II clinical trial of transcranial direct current stimulation in the treatment of primary progressive aphasia
经颅直流电刺激治疗原发性进行性失语症II期临床试验
- 批准号:
10522254 - 财政年份:2022
- 资助金额:
$ 35.04万 - 项目类别: