Brain Connectivity Supporting Language Recovery in Aphasia

大脑连接支持失语症的语言恢复

基本信息

项目摘要

DESCRIPTION (provided by applicant): Aphasia, an impairment in language processing, is a common disorder associated with stroke. The hallmark deficit of aphasia is the inability to name objects or people (anomia). Many patients with chronic aphasia can improve with naming therapy, but treatment is not universally effective. If the reason for differences in treatment effectiveness were better understood, an instrument could be developed to identify the patients who have the greatest potential to improve. Furthermore, a better understanding of the predictors for language recovery could provide crucial information about the mechanisms supporting brain plasticity during rehabilitation. Our group has previously demonstrated that naming improvements due to therapy are primarily associated with functional modulation of the cerebral cortex in the left hemisphere. It follows that structural damage to cortical regions in th left hemisphere is a limiting factor for recovery. Nonetheless, preservation of the cerebral cortex cannot fully predict therapy-induced recovery. Some patients with apparently intact cortical structures are not able to recruit these areas during therapy and fail to improve. This apparent inconsistency may be related to limitations in brain mapping techniques and our hitherto inability to define the extent and location of brain damage after stroke. Specifically, cortical regions may be disconnected as a result of white matter loss. Conventional assessment tools underappreciate cortical disconnection, but it likely plays an important role in naming recovery because it prevents recruitment of spared cortical areas during therapy. With new methodological improvements in brain mapping, this hypothesis can be directly tested. It is now possible to chart neural connections in the entire brain (the brain connectome) using magnetic resonance diffusion tensor imaging. For this project, we developed optimized connectome-mapping techniques to assess neural connectivity in patients with aphasia due to a previous stroke. We aim to investigate the impacts of cortical necrosis and cortical disconnection on chronic naming impairments and treatment-induced naming recovery. This proposal leverages high-quality imaging and behavioral data from a large prospective treatment trial in aphasia to accomplish our goals in a cost-effective manner. We will assess specific regions in the left hemisphere that have been associated with lexical-semantic retrieval and phonological processing during naming. We will also create a clinical scale for the prediction of treatment outcome based on a personalized assessment of cortical damage and cortical connectivity, advocating for each patient to be treated according to their individualized brain network profile.
描述(由申请人提供):失语症是一种语言处理障碍,是一种与中风相关的常见疾病。失语症的标志性缺陷是无法命名物体或人(失语症)。许多慢性失语症患者可以通过命名疗法得到改善,但治疗并不普遍有效。如果更好地理解治疗效果差异的原因,就可以开发一种工具来识别最有可能改善的患者。此外,更好地理解语言恢复的预测因素可以提供有关康复期间支持大脑可塑性的机制的重要信息。我们的小组之前已经证明,治疗引起的命名改善主要与左半球大脑皮层的功能调节有关。由此可见,左半球皮质区域的结构性损伤是恢复的限制因素。尽管如此,大脑皮层的保护 不能完全预测治疗引起的恢复。一些皮质结构明显完整的患者在治疗期间无法恢复这些区域,因此无法改善。这种明显的不一致可能与大脑绘图技术的局限性以及我们迄今为止无法确定中风后脑损伤的程度和位置有关。具体来说,皮质区域可能由于白质损失而断开。传统的评估工具低估了皮质断开,但它可能在命名恢复中发挥着重要作用,因为它可以防止在治疗期间重新招募空闲的皮质区域。随着大脑绘图方法的新改进,这一假设可以直接得到检验。现在可以使用磁共振扩散张量成像来绘制整个大脑(大脑连接组)中的神经连接图。在这个项目中,我们开发了优化的连接组映射技术来评估因既往中风而失语的患者的神经连接。我们的目的是研究皮质坏死和皮质断开对慢性命名障碍和治疗引起的命名恢复的影响。该提案利用来自大型失语症前瞻性治疗试验的高质量影像和行为数据,以经济高效的方式实现我们的目标。我们将评估左半球中与命名过程中的词汇语义检索和语音处理相关的特定区域。我们还将根据对皮质损伤和皮质连接的个性化评估,创建一个临床量表来预测治疗结果,提倡根据每个患者的个性化大脑网络概况进行治疗。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leonardo F Bonilha其他文献

Leonardo F Bonilha的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leonardo F Bonilha', 18)}}的其他基金

Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    9811129
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    10241330
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
  • 批准号:
    10649724
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    10470912
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Speech Entrainment for Aphasia Recovery (SpARc)
失语症恢复的言语诱导 (SpARc)
  • 批准号:
    10005301
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
  • 批准号:
    10619937
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Predicting Epilepsy Surgery Outcomes Using Neural Network Architecture
使用神经网络架构预测癫痫手术结果
  • 批准号:
    10158551
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Prediction of seizure lateralization and postoperative outcome through the use of deep learning applied to multi-site MRI/DTI data: An ENIGMA-Epilepsy study
通过将深度学习应用于多部位 MRI/DTI 数据来预测癫痫偏侧化和术后结果:ENIGMA-癫痫研究
  • 批准号:
    9751025
  • 财政年份:
    2019
  • 资助金额:
    $ 35.04万
  • 项目类别:
Brain Health and Aphasia Recovery
大脑健康和失语症恢复
  • 批准号:
    10390288
  • 财政年份:
    2016
  • 资助金额:
    $ 35.04万
  • 项目类别:
Brain Health and Aphasia Recovery
大脑健康和失语症恢复
  • 批准号:
    10094381
  • 财政年份:
    2016
  • 资助金额:
    $ 35.04万
  • 项目类别:

相似国自然基金

TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
  • 批准号:
    52361020
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
  • 批准号:
    52309088
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
  • 批准号:
    42376002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
  • 批准号:
    82300697
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling
通过适应性建模将补充学习原则融入失语症康复中
  • 批准号:
    10366326
  • 财政年份:
    2022
  • 资助金额:
    $ 35.04万
  • 项目类别:
Targeting language-specific and executive-control networks with transcranial direct current stimulation in aphasic AD
通过经颅直流电刺激治疗失语性 AD,针对语言特异性和执行控制网络
  • 批准号:
    10701784
  • 财政年份:
    2022
  • 资助金额:
    $ 35.04万
  • 项目类别:
Targeting language-specific and executive-control networks with transcranial direct current stimulation in aphasic AD
通过经颅直流电刺激治疗失语性 AD,针对语言特异性和执行控制网络
  • 批准号:
    10522359
  • 财政年份:
    2022
  • 资助金额:
    $ 35.04万
  • 项目类别:
Integrating complementary learning principles in aphasia rehabilitation via adaptive modeling
通过适应性建模将补充学习原则融入失语症康复中
  • 批准号:
    10573220
  • 财政年份:
    2022
  • 资助金额:
    $ 35.04万
  • 项目类别:
Phase II clinical trial of transcranial direct current stimulation in the treatment of primary progressive aphasia
经颅直流电刺激治疗原发性进行性失语症II期临床试验
  • 批准号:
    10522254
  • 财政年份:
    2022
  • 资助金额:
    $ 35.04万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了