Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
基本信息
- 批准号:8296951
- 负责人:
- 金额:$ 30.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2016-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAccountingAddressBrainClinicalCodeComplexComputer softwareDataData SetDevelopmentDiagnosisDiseaseDisease ProgressionExplosionFunctional Magnetic Resonance ImagingHeterogeneityHumanImageImaging TechniquesIndividualKnowledgeLinear ModelsLocationMeta-AnalysisMethodsModelingMultiple SclerosisMultiple Sclerosis LesionsNeurodegenerative DisordersNeurosciencesPatternPopulationProcessResearchResearch DesignResearch PersonnelSignal TransductionStatistical MethodsStatistical ModelsStructureStudy SubjectTechniquesTimeVariantWorkbasedesignlongitudinal analysisneuroimagingneuropsychiatryplatform-independentresearch studystatisticstool
项目摘要
DESCRIPTION (provided by applicant): Functional neuroimaging has become an essential tool for non-invasively studying the brain of normal and clinical populations. The volume of research using neuroimaging methods has been growing dramatically in the last 20 years. This explosion of research has been supported by a simple and computationally efficient method known as the mass univariate approach (MUA). Despite its common use, however, there are several limitation to the MUA: 1) the inability to infer on the exact location of an effect; 2) the
inability to properly account for spatial heterogeneity amongst subjects and the spatial structure of the effect; and 3) it is not designed for point pattern data, such as that from a neuroimaging meta analysis study, nor the binary valued data from multiple sclerosis lesions. To overcome these limitation of the MUA, we are proposing the development of Bayesian statistical models that explicitly address these issues. Specially, we will develop hierarchical Bayesian spatial point process models to analyze neuroimaging coordinate-level data (e.g. when only the peak location of the activation centers are available such as is the case in neuroimaging meta analysis data), binary imaging data (such as that obtained from multiple sclerosis lesions) and hierarchical Bayesian spatial process/spatial point process models for neuroimage voxel-level data (e.g. when the entire contrast or t-statistic image is available on a group of subjects). More
recently, neuroscientists have been collecting longitudinal data, as well as cross-sectional data, with the intent of studying progression of disease. There is little work done on the analysis of longitudinal neuroimaging data, so we further propose to extend our modeling to incorporate the longitudinal aspect in the data as well as the cross-sectional aspect. We will implement and optimize our methods and make the software available to the public. One notable feature of this work is that the models can be used to help predict/diagnose neuropsychiatric/neurodegenerative diseases and disorders. Thus our models will assist in understanding the development of neuropsychiatric and neurodegenerative disorders, as well as normal brain development, that cannot be answered by current methods/models. This, in turn, will aid in our understanding of the human brain in normal and diseased states.
PUBLIC HEALTH RELEVANCE: Over the past few decades our knowledge of the brain and its associated diseases and disorders has dramatically increased due in part to high-tech imaging techniques. However, the standard practice is to use very basic statistical methods to analyze the large and complex data sets produced by these techniques. In this project we will develop advanced statistical models and associated software that will allow neuroscience researchers to answer questions that cannot be addressed with the basic methods in current use, and this should advance our understanding neuropsychiatric and neurodegenerative disorders.
描述(由申请人提供):功能神经影像已成为非侵入性研究正常和临床人群大脑的重要工具。过去 20 年来,使用神经影像方法的研究量急剧增长。这种研究的爆炸式增长得到了一种简单且计算效率高的方法的支持,称为质量单变量方法(MUA)。然而,尽管它被广泛使用,MUA 仍存在一些限制:1)无法推断效果的确切位置; 2)
无法正确解释受试者之间的空间异质性和效果的空间结构; 3) 它不是为点模式数据而设计的,例如来自神经影像荟萃分析研究的点模式数据,也不是来自多发性硬化症病变的二进制值数据。为了克服 MUA 的这些限制,我们建议开发明确解决这些问题的贝叶斯统计模型。特别是,我们将开发分层贝叶斯空间点处理模型来分析神经影像坐标级数据(例如,当只有激活中心的峰值位置可用时,如神经影像元分析数据中的情况)、二进制成像数据(例如从多发性硬化症病变获得)和神经图像体素级数据的分层贝叶斯空间处理/空间点处理模型(例如,当一组受试者的整个对比度或 t 统计图像可用时)。更多的
最近,神经科学家一直在收集纵向数据和横截面数据,目的是研究疾病的进展。在纵向神经影像数据的分析方面所做的工作很少,因此我们进一步建议扩展我们的建模以将纵向方面以及横截面方面纳入数据中。我们将实施和优化我们的方法并向公众提供该软件。这项工作的一个显着特点是该模型可用于帮助预测/诊断神经精神/神经退行性疾病和紊乱。因此,我们的模型将有助于理解当前方法/模型无法回答的神经精神和神经退行性疾病的发展以及正常的大脑发育。反过来,这将有助于我们了解正常和患病状态下的人脑。
公共健康相关性:在过去的几十年里,我们对大脑及其相关疾病和失调的了解急剧增加,部分原因是高科技成像技术。然而,标准做法是使用非常基本的统计方法来分析这些技术产生的大型且复杂的数据集。在这个项目中,我们将开发先进的统计模型和相关软件,使神经科学研究人员能够回答目前使用的基本方法无法解决的问题,这将增进我们对神经精神和神经退行性疾病的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Timothy D Johnson其他文献
Evaluation of lung MDCT nodule annotation across radiologists and methods.
放射科医生和方法对肺 MDCT 结节注释的评估。
- DOI:
10.1016/j.acra.2006.07.012 - 发表时间:
2006-10-01 - 期刊:
- 影响因子:4.8
- 作者:
C. R. Meyer;Timothy D Johnson;Geoffrey Mclennan;Denise Aberle;Ella A. Kazerooni;H. MacMahon;B. Mul - 通讯作者:
B. Mul
Neoadjuvant chemotherapy for high-grade serous ovarian cancer: radiologic-pathologic correlation of response assessment and predictors of progression.
高级别浆液性卵巢癌的新辅助化疗:反应评估和进展预测因素的放射学病理相关性。
- DOI:
10.1007/s00261-024-04215-w - 发表时间:
2024-03-13 - 期刊:
- 影响因子:2.4
- 作者:
Molly E. Rosel;Tianwen Ma;K. Shampain;Erica B. Stein;A. Wasnik;N. Curci;A. Sciallis;S. Uppal;Timothy D Johnson;K. Maturen - 通讯作者:
K. Maturen
Timothy D Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Timothy D Johnson', 18)}}的其他基金
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10669008 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10451601 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Scalable Bayesian methods for big imaging data analysis
用于大成像数据分析的可扩展贝叶斯方法
- 批准号:
10269912 - 财政年份:2020
- 资助金额:
$ 30.85万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9044118 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Transforming Analytical Learning in the Era of Big Data
大数据时代的分析学习变革
- 批准号:
9149238 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Administrative Supplement Request for Transforming Analytical Learning in the Era of Big Data
大数据时代变革分析学习的行政补充请求
- 批准号:
9243811 - 财政年份:2015
- 资助金额:
$ 30.85万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8446441 - 财政年份:2012
- 资助金额:
$ 30.85万 - 项目类别:
Bayesian Spatial Point Process Modeling of Neuroimage Data
神经图像数据的贝叶斯空间点过程建模
- 批准号:
8984924 - 财政年份:2012
- 资助金额:
$ 30.85万 - 项目类别:
相似国自然基金
套期会计有效性的研究:实证检验及影响机制
- 批准号:72302225
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
全生命周期视域的会计师事务所分所一体化治理与审计风险控制研究
- 批准号:72372064
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
兔死狐悲——会计师事务所同侪CPA死亡的审计经济后果研究
- 批准号:72302197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
上市公司所得税会计信息公开披露的经济后果研究——基于“会计利润与所得税费用调整过程”披露的检验
- 批准号:72372025
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
环境治理目标下的公司财务、会计和审计行为研究
- 批准号:72332003
- 批准年份:2023
- 资助金额:166 万元
- 项目类别:重点项目
相似海外基金
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
- 批准号:
10737308 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Subchondral Trabecular Plate and Rod Abnormalities in Human Osteoarthritis
人类骨关节炎的软骨下小梁板和杆异常
- 批准号:
10660605 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Impact of Structural Racism on Racial Disparities in Cognitive Impairment
结构性种族主义对认知障碍种族差异的影响
- 批准号:
10572864 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别:
Integration of advanced imaging and multiOMICs to elucidate pro-atherogenic effects of endothelial-to-Immune cell-like transition (EndICLT)
整合先进成像和多组学技术来阐明内皮细胞向免疫细胞样转变的促动脉粥样硬化效应 (EndICLT)
- 批准号:
10606258 - 财政年份:2023
- 资助金额:
$ 30.85万 - 项目类别: