Engineering cells for concurrent protein drug biosynthesis and polysialylation
用于并行蛋白质药物生物合成和聚唾液酸化的工程细胞
基本信息
- 批准号:8645308
- 负责人:
- 金额:$ 14.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-03-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAnabolismAntibodiesBaculovirusesBiocompatibleBiologyCell LineCellsChemicalsChemistryDataDoseDrug KineticsErythropoietinEscherichia coliFutureGlycoproteinsGoalsGrowthHalf-LifeHealthHeterogeneityHormonesHumanHuman bodyIn VitroInsectaIntellectual PropertyLengthLettersLicensingMammalian CellManufacturer NameMarketingMeasuresMedicineMetabolic Clearance RateMethodsNatureParentsPathway interactionsPharmaceutical PreparationsPhasePolymersPolysaccharidesPolysialic AcidPositioning AttributePrivate SectorProcessProductionProductivityProteinsQualifyingRecombinant ProteinsRecombinantsResearchSialic AcidsSiteSmall Business Innovation Research GrantStagingTechnologyTestingTherapeuticUniversitiesWyomingalpha 1-Antitrypsinbiocompatible polymerbiodegradable polymercell typecellular engineeringclinical efficacycommercializationcostdesigndosageexperienceglycosyltransferaseimprovedin vivoinnovationmeetingsnext generationprototypepublic health relevanceresearch and developmentscaffoldsuccesstherapeutic protein
项目摘要
Project Summary / Abstract
Therapeutic proteins, or biologics, represent a $100 billion market that includes drugs
such as antibodies, hormones, and many others. The clinical efficacy of biologics is critically
determined by their circulating half-lives. Hence, various methods have been developed to
increase their circulating half-lives by reducing clearance rates. This is commonly achieved by
chemically conjugating biologics with biocompatible polymers in vitro. However, chemical
conjugation is expensive, complicated, and often results in substantial losses of specific activity
as well as a heterogeneous product mixture. These serious drawbacks have created a demand
for a technology that can add biocompatible polymers to biologics without in vitro chemistry.
To meet this demand, GlycoBac proposes a new, innovative method to add polysialic acid
to biologics during their biosynthesis. Polysialic acid is (PSA) naturally found in the human body,
and is a fully biocompatible, biodegradable and non-immunogenic polymer. In vitro chemically
polysialylated biologics have already shown improved tolerance and pharmacokinetics compared
to parent drugs. Moreover, sialic acid biology is well-understood through over half a century of
research. Thus, PSA is an excellent choice to add to biologics with the goal of increasing their
half-lives. Our new method uses existing N-glycans on glycoprotein biologics as a scaffold for
PSA addition. Cells used for biologic production already add N-glycans to well-defined positions.
We propose to enzymatically add PSA to these pre-existing N-glycans during biologic
biosynthesis (in vivo). In contrast to chemical conjugation, our method is site-specific, does not
require additional processing steps, and does not introduce additional cost and complexity.
This SBIR project is designed to prove the feasibility of in vivo polysialylation as a next-
generation platform technology. We will achieve this by Aims focused on producing a prototype
cell line with a polysialylation pathway. These cells will be used to produce two polysialylated,
commercially relevant glycoprotein biologics. For Phase I, we will use glycoengineered insect
cells, as GlycoBac has extensive experience with this cell type. Our polysialylation technology is
also compatible with mammalian cell lines such as CHO and PerC.6, which are commonly used
to produce biologics. Phase I success will set the stage for a larger Phase II project focused on
demonstrating the pharmacokinetics and activity of in vivo polysialylated biologics. Phase III
commercialization of our in vivo polysialylation technology with private-sector partners is
expected to significantly impact human health by enabling production of more efficacious
glycoprotein biologics that require less-frequent dosing and/or reduced dosages.
项目概要/摘要
治疗性蛋白质或生物制剂代表着一个价值 1000 亿美元的市场,其中包括药物
例如抗体、激素等等。生物制剂的临床疗效至关重要
由它们的循环半衰期决定。因此,人们开发了各种方法来
通过降低清除率来延长其循环半衰期。这通常是通过以下方式实现的
在体外将生物制剂与生物相容性聚合物进行化学结合。然而,化学
缀合昂贵、复杂,并且常常导致特定活性的大量损失
以及异质产品混合物。这些严重的缺点催生了需求
一项无需体外化学即可将生物相容性聚合物添加到生物制剂中的技术。
为了满足这一需求,GlycoBac 提出了一种添加聚唾液酸的创新方法
生物制剂的生物合成过程中。聚唾液酸(PSA)天然存在于人体中,
是一种完全生物相容、可生物降解且非免疫原性的聚合物。体外化学
与相比,聚唾液酸化生物制剂已显示出更好的耐受性和药代动力学
为母药。此外,半个多世纪以来,人们对唾液酸生物学有了充分的了解。
研究。因此,PSA 是添加到生物制剂中的绝佳选择,目的是提高其活性
半衰期。我们的新方法使用糖蛋白生物制剂上现有的 N-聚糖作为支架
PSA 添加。用于生物生产的细胞已经将 N-聚糖添加到明确的位置。
我们建议在生物制剂过程中通过酶法将 PSA 添加到这些预先存在的 N-聚糖中
生物合成(体内)。与化学缀合相反,我们的方法是位点特异性的,不
需要额外的处理步骤,并且不会引入额外的成本和复杂性。
该 SBIR 项目旨在证明体内聚唾液酸化作为下一代的可行性
生成平台技术。我们将通过专注于生产原型来实现这一目标
具有多唾液酸化途径的细胞系。这些细胞将用于产生两种聚唾液酸化的,
商业相关的糖蛋白生物制剂。对于第一阶段,我们将使用糖工程昆虫
细胞,因为 GlycoBac 在这种细胞类型方面拥有丰富的经验。我们的聚唾液酸化技术是
还与常用的哺乳动物细胞系(例如 CHO 和 PerC.6)兼容
生产生物制剂。第一阶段的成功将为更大的第二阶段项目奠定基础,该项目的重点是
证明体内聚唾液酸化生物制剂的药代动力学和活性。第三阶段
我们与私营部门合作伙伴的体内聚唾液酸化技术的商业化是
预计将通过生产更有效的药物来显着影响人类健康
需要较少给药频率和/或减少剂量的糖蛋白生物制剂。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christoph Geisler其他文献
Christoph Geisler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christoph Geisler', 18)}}的其他基金
Constitutive oxalate-biodegrading Bacillus subtilis for kidney stones
用于肾结石的组成型草酸盐生物降解枯草芽孢杆菌
- 批准号:
10740242 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Constitutive oxalate-biodegrading Bacillus subtilis for kidney stones
用于肾结石的组成型草酸盐生物降解枯草芽孢杆菌
- 批准号:
10484663 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别:
Glycoengineering insect cells for commercial recombinant glycoprotein production
用于商业重组糖蛋白生产的糖工程昆虫细胞
- 批准号:
8733179 - 财政年份:2013
- 资助金额:
$ 14.82万 - 项目类别:
Glycoengineering insect cells for commercial recombinant glycoprotein production
用于商业重组糖蛋白生产的糖工程昆虫细胞
- 批准号:
8589209 - 财政年份:2013
- 资助金额:
$ 14.82万 - 项目类别:
Glycoengineered insect cells for commercial biologics manufacturing
用于商业生物制品制造的糖基工程昆虫细胞
- 批准号:
9140154 - 财政年份:2013
- 资助金额:
$ 14.82万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
苯丙氨酰tRNA合成酶α(FARSA)调控脂肪细胞脂质代谢的机制研究
- 批准号:82300954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The role of osteoblast progenitors in response to bone anabolic agents
成骨细胞祖细胞对骨合成代谢剂的反应的作用
- 批准号:
10404415 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Evaluation of a Next Generation SchistoShield Vaccine
下一代 SchistoShield 疫苗的评估
- 批准号:
10761529 - 财政年份:2023
- 资助金额:
$ 14.82万 - 项目类别:
Multiscale Modeling of B. Anthracis Surface Layer Assembly and Depolymerization by Nanobodies
纳米抗体对炭疽杆菌表面层组装和解聚的多尺度建模
- 批准号:
10432488 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别:
Novel AAV vector generation methods to prevent immunogenic unmethylated CpGs that trigger efficacy-limiting CTLs in human gene therapy
新型 AAV 载体生成方法可防止免疫原性未甲基化 CpG 触发人类基因治疗中功效限制的 CTL
- 批准号:
10620770 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别:
Pathogenicity of the emerging pathogen Kingella kingae
新出现的病原体金氏菌的致病性
- 批准号:
10559927 - 财政年份:2022
- 资助金额:
$ 14.82万 - 项目类别: