2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
基本信息
- 批准号:8305318
- 负责人:
- 金额:$ 11.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAutistic DisorderBindingBinding ProteinsBiologicalBiologyBipolar DisorderBrainBrain regionBudgetsClinical DataCognitiveCollaborationsCommunitiesComputer softwareDNADNA MethylationDataData AnalysesData SetData SourcesDatabasesDevelopmentDimensionsDiseaseDisease AssociationEtiologyFunctional ImagingFunctional Magnetic Resonance ImagingGene ExpressionGenerationsGenesGeneticGenetic TranscriptionGenomicsGenotypeGoalsGurHumanImageIndividualInformation NetworksInstitutesKnowledgeLanguageLeadLinkLiteratureMagnetic Resonance ImagingMeasuresMental disordersMethodsMethylationModelingMolecularOnline Mendelian Inheritance In ManPathway AnalysisPathway interactionsPediatric HospitalsPhenotypePhiladelphiaPopulationPredispositionProcessProteinsPubMedQuality ControlQuantitative Trait LociResearchResearch PersonnelSamplingSchizophreniaSiteSolutionsSynapsesSystemTest ResultTestingUnited StatesUniversitiesValidationVariantWeightWorkautism spectrum disorderbasecase controlclinical phenotypecohortcomparativecomputer based statistical methodscostcrosslinkdata miningflexibilitygene discoverygenome wide association studymedical schoolsmethod developmentneuroimagingnovelpopulation basedpredictive modelingprotein metaboliteprotein protein interactionreconstructionresponseskillssmall moleculetooluser friendly softwareweb services
项目摘要
DESCRIPTION (provided by applicant): In this collaborative R01, "Networks from multidimensional data for schizophrenia and related disorders" submitted in response to RFA-MH-12-020, we propose to develop methods for integrating a broad range of genomic, imaging, and clinical data, hosting all data, methods, and results on a novel, flexible and extensible computing platform. Subsequently, these data and methods will be used to establish workflows available to the research community to integrate and mine the data for discovery. As proof-of-concept, multiple datasets for schizophrenia (SCZ) will be used and then extended to additional mental disorders. Specifically, in AIM 1 we will adapt the Synapse platform at Sage Bionetworks to host, QC, normalize, and transform data in an analysis ready format. Synapse will also enable computation, storage, sharing, and integration of SCZ specific data with pre-existing public data. The Sage platform will be hosted by the data center in the Institute of Genomics and Multiscale Biology at the Mount Sinai School of Medicine consisting of a data warehouse (organized file systems and databases), a web service tier and applications tier adapted to facilitate network reconstruction and more generally model building with SCZ data. In AIM 2, we will develop a pipeline of analytic methods that include new and existing tools for the primary processing of multiple types of data. Using direct experimental findings we will generate primary analysis datasets (e.g., expression QTLs, imaging QTLs, GWAS with SNP/CNV genotypes, RNASeq signatures, and DNA methylation and RNAseq associations), construct interaction networks with population-based expression and imaging datasets (e.g. gene expression, functional MRI and structural MRI), transform all data and results into analysis ready formats, and construct a standard set of queries to facilitate SCZ gene discovery. In AIM 3 following platform development, generation of primary analysis datasets, and basic network constructions, we will develop and apply methods to construct integrated, higher-order molecular networks and more generalized models to enhance our understanding of the genetic loci and gene networks underlying schizophrenia. Using a Bayesian framework, methods will be developed that identify network modules and the underlying genetic variance component (including epistatic interactions), incorporate prior disease information and extensive prior biological knowledge to construct more detailed probabilistic causal models, and identify causal regulators of networks associated with SCZ. In AIM 4, we will assess the extent to which the models validate in independent SCZ data and in bipolar disorder and autism. This proposal should have a major impact on the field as it proposes to create a solution, in the form of new platforms and analytic methods, for the bottleneck in gene discovery that results from our limited ability to fully analyze the data currently available on large samples of individuals suffering fro mental illness. This proposal will make possible the efficient use of this wealth of multi-dimensional data.
PUBLIC HEALTH RELEVANCE: In the United States, over a million people have schizophrenia. The costs are staggering in human and financial terms. We propose to develop methods for integrating a broad range of genomic data into a novel, flexible and extensible computing platform. Subsequently, these data will be used to develop a pipeline of algorithms for integrating and mining the data. We will use as a proof-of-concept multiple datasets for schizophrenia, and then extend this to additional mental disorders.
描述(由申请人提供):在响应 RFA-MH-12-020 提交的合作 R01“精神分裂症和相关疾病的多维数据网络”中,我们建议开发用于整合广泛的基因组、成像、和临床数据,将所有数据、方法和结果托管在新颖、灵活且可扩展的计算平台上。随后,这些数据和方法将用于建立研究界可用的工作流程,以整合和挖掘数据以进行发现。作为概念验证,将使用精神分裂症 (SCZ) 的多个数据集,然后扩展到其他精神障碍。具体来说,在 AIM 1 中,我们将采用 Sage Bionetworks 的 Synapse 平台来以分析就绪格式托管、质量控制、标准化和转换数据。 Synapse 还将实现 SCZ 特定数据与预先存在的公共数据的计算、存储、共享和集成。 Sage 平台将由西奈山医学院基因组学和多尺度生物学研究所的数据中心托管,包括数据仓库(有组织的文件系统和数据库)、网络服务层和用于促进网络重建的应用程序层更普遍的是使用 SCZ 数据构建模型。在 AIM 2 中,我们将开发一系列分析方法,其中包括用于初级处理多种类型数据的新工具和现有工具。利用直接实验结果,我们将生成主要分析数据集(例如,表达 QTL、成像 QTL、具有 SNP/CNV 基因型的 GWAS、RNASeq 特征以及 DNA 甲基化和 RNAseq 关联),构建具有基于群体的表达和成像数据集的交互网络(例如基因表达、功能 MRI 和结构 MRI),将所有数据和结果转换为分析就绪格式,并构建一组标准查询以促进 SCZ 基因发现。在AIM 3中,继平台开发、主要分析数据集生成和基本网络构建之后,我们将开发和应用构建集成、高阶分子网络和更广义模型的方法,以增强我们对精神分裂症背后的遗传位点和基因网络的理解。使用贝叶斯框架,将开发识别网络模块和潜在遗传方差成分(包括上位相互作用)的方法,结合先前的疾病信息和广泛的先前生物学知识来构建更详细的概率因果模型,并识别与SCZ。在 AIM 4 中,我们将评估模型在独立 SCZ 数据以及双相情感障碍和自闭症中的验证程度。该提案应该对该领域产生重大影响,因为它建议以新平台和分析方法的形式创建一个解决方案,以解决由于我们全面分析当前大样本数据的能力有限而导致的基因发现瓶颈患有精神疾病的人。该提案将使有效利用这些丰富的多维数据成为可能。
公共卫生相关性:在美国,超过一百万人患有精神分裂症。从人力和财务角度来看,其成本是惊人的。我们建议开发将广泛的基因组数据集成到新颖、灵活和可扩展的计算平台中的方法。随后,这些数据将用于开发用于集成和挖掘数据的算法管道。我们将使用精神分裂症的多个数据集作为概念验证,然后将其扩展到其他精神障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruben C. Gur其他文献
Is There an Association between Advanced Paternal Age and Endophenotype Deficit Levels in Schizophrenia?
高龄父亲与精神分裂症的内表型缺陷水平之间是否存在关联?
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
D. Tsuang;Michelle L. Esterberg;D. Braff;M. Calkins;K. Cadenhead;D. Dobie;R. Freedman;Michael Green;T. Greenwood;Raquel Gur;Ruben C. Gur;W. Horan;L. Lazzeroni;G. Light;S. Millard;A. Olincy;K. Nuechterlein;L. Seidman;L. Siever;J. Silverman;W. Stone;J. Sprock;Catherine A. Sugar;N. Swerdlow;M. Tsuang;B. Turetsky;A. Radant - 通讯作者:
A. Radant
Proactive inhibition and semantic organization Relationship with verbal memory in patients with schizophrenia
精神分裂症患者主动抑制、语义组织与言语记忆的关系
- DOI:
10.1017/s135561770000165x - 发表时间:
1996-11-01 - 期刊:
- 影响因子:2.6
- 作者:
D. Kareken;Paul J. Moberg;Ruben C. Gur - 通讯作者:
Ruben C. Gur
The fusiform response to faces: Explicit versus implicit processing of emotion
对面孔的梭形反应:情绪的显性处理与隐性处理
- DOI:
10.1002/hbm.21406 - 发表时间:
2013-01-01 - 期刊:
- 影响因子:4.8
- 作者:
J. F. Monroe;M. Griffin;A. Pinkham;J. Loughead;Ruben C. Gur;Ruben C. Gur;T. P. Roberts;J. Edgar - 通讯作者:
J. Edgar
Dopamine transporters decrease with age.
多巴胺转运蛋白随着年龄的增长而减少。
- DOI:
10.1142/s0217732324500111 - 发表时间:
1996-04-01 - 期刊:
- 影响因子:0
- 作者:
N. D. Volkow;Yu;Joanna S. Fowler;Gene;J. Logan;S. Gatley;R. Hitzemann;Gwenn S. Smith;Suzanne D. Fields;Ruben C. Gur - 通讯作者:
Ruben C. Gur
Cognitive changes in schizophrenia-a critical look
精神分裂症的认知变化——批判性的审视
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Ruben C. Gur;J. Ragland;R. Gur - 通讯作者:
R. Gur
Ruben C. Gur的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruben C. Gur', 18)}}的其他基金
Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
- 批准号:
10112310 - 财政年份:2019
- 资助金额:
$ 11.73万 - 项目类别:
Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
- 批准号:
9920211 - 财政年份:2019
- 资助金额:
$ 11.73万 - 项目类别:
Creating an adaptive screening tool for detecting neurocognitive deficits and psychopathology across the lifespan
创建自适应筛查工具来检测整个生命周期的神经认知缺陷和精神病理学
- 批准号:
10356829 - 财政年份:2019
- 资助金额:
$ 11.73万 - 项目类别:
Multimodal brain maturation indices modulating psychopathology and neurocognition
调节精神病理学和神经认知的多模式大脑成熟指数
- 批准号:
9275046 - 财政年份:2015
- 资助金额:
$ 11.73万 - 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
- 批准号:
8657481 - 财政年份:2012
- 资助金额:
$ 11.73万 - 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
- 批准号:
8463034 - 财政年份:2012
- 资助金额:
$ 11.73万 - 项目类别:
3/5-Genetics of Transcriptional Endophenotypes for Schizophrenia
3/5-精神分裂症转录内表型的遗传学
- 批准号:
8237585 - 财政年份:2012
- 资助金额:
$ 11.73万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8501689 - 财政年份:2012
- 资助金额:
$ 11.73万 - 项目类别:
2/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
2/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8665498 - 财政年份:2012
- 资助金额:
$ 11.73万 - 项目类别:
Changes in neural response to eating after bariatric surgery: MRI results
减肥手术后饮食神经反应的变化:MRI 结果
- 批准号:
8607936 - 财政年份:2010
- 资助金额:
$ 11.73万 - 项目类别:
相似国自然基金
孕期镉暴露导致的脑神经突触功能异常的分子机制及其在儿童自闭症发生发展中关系研究
- 批准号:82371177
- 批准年份:2023
- 资助金额:47 万元
- 项目类别:面上项目
用原位基因编辑技术编辑猕猴特定脑区的自闭症基因,探究不同脑区与自闭症的表型关系及机制
- 批准号:82360226
- 批准年份:2023
- 资助金额:32.2 万元
- 项目类别:地区科学基金项目
利用CHD8基因突变猴研究自闭症
- 批准号:82371178
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
面向宏基因组学数据的自闭症诊断及分型方法研究
- 批准号:62302089
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多模态数据驱动的自闭症儿童“动作-情感”识别与体感互动游戏干预研究
- 批准号:62307034
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Crowd coding in the brain:3D imaging and control of collective neuronal dynamics
大脑中的群体编码:集体神经元动力学的 3D 成像和控制
- 批准号:
8827121 - 财政年份:2014
- 资助金额:
$ 11.73万 - 项目类别:
Crowd coding in the brain:3D imaging and control of collective neuronal dynamics
大脑中的群体编码:集体神经元动力学的 3D 成像和控制
- 批准号:
9268816 - 财政年份:2014
- 资助金额:
$ 11.73万 - 项目类别:
Informatics platform for mammalian gene regulation at isoform-level
异构体水平的哺乳动物基因调控信息学平台
- 批准号:
8658144 - 财政年份:2013
- 资助金额:
$ 11.73万 - 项目类别:
Informatics Platform for Mammalian Gene Regulation at Isoform-level
异构体水平的哺乳动物基因调控信息学平台
- 批准号:
8843951 - 财政年份:2013
- 资助金额:
$ 11.73万 - 项目类别:
3/3-Networks from Multidimensional Data for Schizophrenia and Related Disorders
3/3-来自精神分裂症和相关疾病多维数据的网络
- 批准号:
8501691 - 财政年份:2012
- 资助金额:
$ 11.73万 - 项目类别: