Benchmarking Hospital Quality: Template Matching versus Conventional Regression Approaches

医院质量基准测试:模板匹配与传统回归方法

基本信息

项目摘要

Background: Identifying and remediating low-quality care is at the heart of systematic quality improvement, particularly in VA. However, cross-hospital comparisons to identify under-performing hospitals are limited by differences in patient case-mix and illness severity. Clinicians consider the current approach to benchmarking with conventional regression to be unfair, unclear, and unhelpful. While substantial resources are devoted to hospital benchmarking, the current return on this investment is limited because clinicians do not understand or trust the methods. The National Academy of Medicine has recently called for investing into the science of performance measurement and for increasing its transparency and validity. Template matching has been proposed as an alternative methodological approach to benchmarking that is fair, clear, and helpful. However, this new approach has never been tested outside of limited research settings. Specific Aims: To test the utility of template matching for comparing quality of care across VA's diverse acute care hospitals, this project will assess the feasibility, accuracy, and interpretability of this approach. Specifically, the project will: (A1) Feasibility: Develop and optimize two template matching approaches for comparing 30-day mortality across VA hospitals. (A2) Accuracy: Compare the ability of template matching versus conventional regression to correctly identify under-performing hospitals. (A3) Interpretability: Compare the interpretability and credibility of hospital performance data generated from template matching versus conventional regression models with clinical leaders. Anticipated Impact: The overarching goal of this proposal is to improve the care of hospitalized Veterans. This proposal will apply promising, new template matching approaches for benchmarking to the diverse VA healthcare system and complete a multi-faceted evaluation of these approaches. We will consider not only the feasibility and methodological rigor of template matching, but also the interpretability, credibility and accountability of the data. We expect that template matching will be feasible for benchmarking VA acute care hospitals, that it will identify under-performing hospitals at least as well as current benchmarking with conventional regression, and that it will be more interpretable and credible to VA Chiefs of Medicine than current performance reports. We anticipate many future expansions to this work, including the use of template matching for VA to private sector comparisons. Unique Features and Innovation: This proposal is innovative because it will simultaneously (1) advance the statistical state-of-the-art in hospital benchmarking, (2) develop the necessary infrastructure in consultation with operational partners to use template matching in VA, and (3) evaluate this new approach not just statistically, but also with the actual users it is supposed to inform. The results are highly relevant to VA, whose performance is always under scrutiny. It is also of great interest outside VA, for the many healthcare systems who similarly struggle to provide meaningful and actionable assessments of individual hospital's performance. Project Methods: Aim 1 will develop and refine the statistical methodology for benchmarking 30-day mortality in VA acute care hospitals using two template matching approaches: (1) a single template and (2) personalized templates for each hospital. Multiple statistical approaches to matching will be considered to achieve the fairest comparisons across hospitals. Aim 2 will use simulation and real patient data to measure when and why template matching and conventional regression approaches may yield discordant assessments of hospitals. Aim 3 will develop the presentation of template matching data, then survey VA Chiefs of Medicine to compare the interpretability and credibility of performance reports using template matching versus conventional regression for hospital benchmarking, with follow-up semi-structured interviews with a subset of Chiefs to further understand template matching performance reports from the perspective of Chiefs of Medicine.
背景:识别和修复低质量护理是系统质量改进的核心, 特别是在VA中。但是,识别表现不佳医院的跨住院比较受到限制 患者病例混合和疾病严重程度的差异。临床医生考虑当前的基准测试方法 传统的回归是不公平,不清楚的和无助的。虽然大量资源专门用于 医院基准测试,目前的这项投资回报率有限,因为临床医生不了解或 相信方法。美国国家医学院最近呼吁投资于 性能测量以及提高其透明度和有效性。模板匹配已经 提出作为基准测试方法的替代方法学方法,该方法是公平,清晰和有用的。然而, 这种新方法从未在有限的研究环境之外进行测试。 具体目的:测试模板匹配的实用性,以比较VA多样的急性的护理质量 护理医院,该项目将评估这种方法的可行性,准确性和解释性。 具体而言,该项目将:(A1)可行性:开发和优化两种模板匹配方法 比较VA医院的30天死亡率。 (A2)精度:比较模板匹配的能力 相对于常规回归,以正确识别表现不佳的医院。 (A3)解释性:比较 与模板匹配生成的医院绩效数据的可解释性和可信度 具有临床领导者的常规回归模型。 预期的影响:该提案的总体目标是改善住院医师的护理。 该提案将采用有希望的新模板匹配方法来对不同的VA进行基准测试 医疗保健系统并完成对这些方法的多方面评估。我们不仅要考虑 模板匹配的可行性和方法论严格性,以及可解释性,可信度和 数据的问责制。我们希望模板匹配对于对VA急性护理进行基准测试是可行的 医院,它至少将确定表现不佳的医院以及当前的基准测试 传统的回归,它将对VA医学负责人更容易解释和可信 当前的绩效报告。我们预计这项工作将来会有许多扩展,包括使用模板 匹配VA与私营部门的比较。 独特的功能和创新:此提案具有创新性,因为它将同时推进(1) 医院基准测试中的统计最先进,(2)在咨询中开发必要的基础设施 与操作合作伙伴一起使用VA中的模板匹配,(3)评估这种新方法 从统计上讲,也应该与实际用户有关。结果与VA高度相关,VA 绩效总是受到审查。对于许多医疗保健系统,它也引起了人们的极大兴趣 同样,他们努力对个人医院表现进行有意义且可行的评估。 项目方法:AIM 1将开发和完善基准测试30天死亡率的统计方法 在VA急诊医院中使用两种模板匹配方法:(1)一个模板和(2)个性化 每个医院的模板。将考虑多种匹配的统计方法来实现最公平的 在医院进行比较。 AIM 2将使用模拟和真实的患者数据来衡量何时以及为什么 模板匹配和常规回归方法可能会对医院产生不一致的评估。 AIM 3将开发模板匹配数据的介绍,然后调查VA医学负责人以比较 使用模板匹配与传统的绩效报告的可解释性和可信度 医院基准测试的回归,随后的半结构化访谈与一小部分酋长 从医学酋长的角度,进一步了解匹配性能报告的模板。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hallie Christine Prescott其他文献

Hallie Christine Prescott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hallie Christine Prescott', 18)}}的其他基金

Optimizing Veteran Recovery from Sepsis (OVeR-Sepsis)
优化脓毒症退伍军人康复 (OVeR-脓毒症)
  • 批准号:
    10311252
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Optimizing Veteran Recovery from Sepsis (OVeR-Sepsis)
优化脓毒症退伍军人康复 (OVeR-脓毒症)
  • 批准号:
    10496554
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Benchmarking Hospital Quality: Template Matching versus Conventional Regression Approaches
医院质量基准测试:模板匹配与传统回归方法
  • 批准号:
    10308540
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
Benchmarking Hospital Quality: Template Matching versus Conventional Regression Approaches
医院质量基准测试:模板匹配与传统回归方法
  • 批准号:
    10186545
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
General pathways and personalized risk of morbidity after sepsis
脓毒症后发病的一般途径和个性化风险
  • 批准号:
    9124922
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
General pathways and personalized risk of morbidity after sepsis
脓毒症后发病的一般途径和个性化风险
  • 批准号:
    8950589
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:

相似海外基金

AIVIS: Next Generation Vigilant Information Seeking Artificial Intelligence-based Clinical Decision Support for Sepsis
AIVIS:下一代警惕信息寻求基于人工智能的脓毒症临床决策支持
  • 批准号:
    10699457
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The Development and Evaluation of Enhanced Digital-Chemosensory-Based Olfactory Training for Remote Management of Substance Use Disorders (EDITOR)
用于药物使用障碍远程管理的增强型数字化学感应嗅觉训练的开发和评估(编辑)
  • 批准号:
    10741580
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
ITCA NARCH 12 Admin Core
ITCA NARCH 12 管理核心
  • 批准号:
    10438227
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Medicaid Expansion and Quality, Utilization and Coordination of Health Care for Veterans with Chronic Kidney Disease
慢性肾病退伍军人医疗补助的扩展以及医疗保健的质量、利用和协调
  • 批准号:
    10335803
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Medicaid Expansion and Quality, Utilization and Coordination of Health Care for Veterans with Chronic Kidney Disease
慢性肾病退伍军人医疗补助的扩展以及医疗保健的质量、利用和协调
  • 批准号:
    10833998
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了