An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
基本信息
- 批准号:8728991
- 负责人:
- 金额:$ 171.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:Active SitesAreaBase SequenceBindingChargeComplexDNADNA SequenceDNA Sequence DeterminationDNA-Directed DNA PolymeraseDetectionDevelopmentDiagnosticDiffuseElectrical EngineeringElectrodesElectronicsEnsureEthylene GlycolsFeedbackFoundationsGenomeGenomicsGoalsHeadHemolysinIndiumLeftLengthLinkMeasuresMedicalMedicineMethodologyMethodsModificationMutateNucleic AcidsNucleotidesPolyethylene GlycolsPolymerasePolymersPolynucleotidesProductionPropertyProteinsReactionReadingReportingScientistSequence DeterminationSideSignal TransductionSpeedSystemTechniquesTestingTextTimeUrsidae FamilyVestibuleWorkbasechemical propertyconstrictioncostdensitydesignethylene glycolgenome sequencinginformation processinginorganic phosphatemillisecondmutantnanonanofabricationnanoporenucleotide analogphosphodiesterpolypeptidepreventprototyperesearch and developmentresearch studysensorsingle moleculetripolyphosphatevoltage
项目摘要
There is a great need to reduce the cost of DNA sequencing to achieve the goal of the $1000
genome. We recently developed a new nanopore-based sequencing by synthesis (Nano-SBS)
approach. In this project, we will pursue the development of the Nano-SBS approach into a high
throughput real-time single-molecule sequencing platform. In the Nano-SBS method, a polymer
tag of distinct size and charge is attached to the terminal phosphate of each of the four
nucleotides. When the complementary nucleotide analog enters a template-primer-polymerase
complex that is attached to the nanopore during the polymerase reaction, the tag specific for
that nucleotide is captured in the voltage gradient within the nanopore and results in a current
blockade unique to each tag for sequence determination. The polymerase is covalently attached
to the nanopore by a short linker so the polymeric tag will have sufficient time to enter the
vestibule and constriction of the nanopore prior to its release ensuring that its current blockade
signal is recorded by the nanopore. The extended DNA strand bears only natural nucleotides,
enabling long reads. We have carried out the key proof-of-principle experiments to demonstrate
the feasibility of this approach. Here our strong team of nucleic acid chemists, genomic
scientists, electrical engineers, and nanofabrication experts will further develop the Nano-SBS
as a high throughput genomic sequencing system. We will develop robust methodology to
attach polymerase to the .-hemolysin (AHL) nanopore and synthesize nano-tags with unique
chemical properties resulting in AHL current blockades distinct from each other and nucleotide
precursors. We will test these elements in single pores as well as in new nanopore array chips
with separate sensors and circuits for each pore. We will produce mutant AHL and polymerase
constructs and link them to each other, selecting for the combination that assures accurate DNA
extension reactions, and rapid capture and detection of tags in nanopores. The nanopore chips
will be enhanced and expanded from the current 260 nanopores to over 125,000 using
advanced nanofabrication techniques. We will conduct real-time single molecule Nano-SBS on
DNA templates with known sequences to test and optimize the overall system. These research
and development efforts will lay the foundation for the production of a commercial single
molecule electronic DNA sequencing platform, which will enable routine use of sequencing for
medical diagnostics and personalized medicine.
1
非常需要降低DNA测序的成本以实现1000美元的目标
基因组。我们最近通过合成(Nano-SB)开发了一种新的基于纳米孔的测序
方法。在这个项目中,我们将追求纳米SB的方法的开发
吞吐量实时单分子测序平台。在纳米SBS方法中,聚合物
尺寸和电荷的标签附着在四个的末端磷酸盐
核苷酸。当互补的核苷酸类似物进入模板 - 聚合物聚合酶时
在聚合酶反应期间附着在纳米孔上的复合物,特异性的标签
该核苷酸被捕获在纳米孔内的电压梯度中,并导致电流
每个标签独有的封锁以确定序列。聚合酶是共价附加的
通过短链接到纳米孔,因此聚合物标签将有足够的时间进入
纳米孔在释放之前的前庭和收缩,以确保其当前封锁
信号由纳米孔记录。扩展的DNA链只有天然核苷酸,
启用长阅读。我们已经进行了主要的原理实验证明
这种方法的可行性。在这里,我们强大的核酸化学家团队,基因组
科学家,电气工程师和纳米制造专家将进一步开发纳米SBS
作为高通量基因组测序系统。我们将开发出强大的方法论
将聚合酶连接到.-羟蛋白酶(AHL)纳米孔,并合成具有独特的纳米标签
化学特性导致AHL电流阻滞与彼此不同的核苷酸
前体。我们将在单个毛孔以及新的纳米孔阵列芯片中测试这些元素
每个孔都带有单独的传感器和电路。我们将产生突变的AHL和聚合酶
构造并互相链接,选择确保准确DNA的组合
扩展反应,以及纳米孔中标签的快速捕获和检测。纳米芯芯片
将增强并从当前的260纳米孔扩展到超过125,000
高级纳米制造技术。我们将对实时单分子纳米-SB进行
具有已知序列的DNA模板测试和优化整体系统。这些研究
开发工作将为生产商业单一的生产奠定基础
分子电子DNA测序平台,该平台将常规使用测序
医学诊断和个性化医学。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEORGE M CHURCH其他文献
GEORGE M CHURCH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEORGE M CHURCH', 18)}}的其他基金
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10170406 - 财政年份:2020
- 资助金额:
$ 171.5万 - 项目类别:
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10381535 - 财政年份:2020
- 资助金额:
$ 171.5万 - 项目类别:
Single-Molecule Electronic Nucleic Acid Sequencing-by-Synthesis Using Novel Tagged Nucleotides and Nanopore Constructs
使用新型标记核苷酸和纳米孔结构进行单分子电子核酸合成测序
- 批准号:
10021992 - 财政年份:2019
- 资助金额:
$ 171.5万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9357685 - 财政年份:2016
- 资助金额:
$ 171.5万 - 项目类别:
Exploring a Novel Paradigm of Schizophrenia and Bipolar Disorder
探索精神分裂症和双相情感障碍的新范式
- 批准号:
9981018 - 财政年份:2016
- 资助金额:
$ 171.5万 - 项目类别:
Genome Engineering an IPSC Model of Alzheimer's Disease
阿尔茨海默病的基因组工程 IPSC 模型
- 批准号:
8756257 - 财政年份:2014
- 资助金额:
$ 171.5万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8572847 - 财政年份:2013
- 资助金额:
$ 171.5万 - 项目类别:
An Integrated System for Single Molecule Electronic Sequencing by Synthesis
单分子电子合成测序集成系统
- 批准号:
8919436 - 财政年份:2013
- 资助金额:
$ 171.5万 - 项目类别:
相似国自然基金
跨区域调水工程与区域经济增长:效应测度、机制探究与政策建议
- 批准号:72373114
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
农产品区域公用品牌地方政府干预机制与政策优化研究
- 批准号:72373068
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
新型城镇化与区域协调发展的机制与治理体系研究
- 批准号:72334006
- 批准年份:2023
- 资助金额:167 万元
- 项目类别:重点项目
我国西南地区节点城市在次区域跨国城市网络中的地位、功能和能级提升研究
- 批准号:72364037
- 批准年份:2023
- 资助金额:28 万元
- 项目类别:地区科学基金项目
多时序CT联合多区域数字病理早期预测胃癌新辅助化疗抵抗的研究
- 批准号:82360345
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Neoantigen-specific T cell responses for Fibrolamellar Hepatocellular Carcinoma
纤维板层肝细胞癌的新抗原特异性 T 细胞反应
- 批准号:
10467512 - 财政年份:2022
- 资助金额:
$ 171.5万 - 项目类别:
Small molecule inhibitors and degraders of picornavirus 2A proteases as direct-acting antivirals
小核糖核酸病毒 2A 蛋白酶的小分子抑制剂和降解剂作为直接抗病毒药物
- 批准号:
10514272 - 财政年份:2022
- 资助金额:
$ 171.5万 - 项目类别:
LIM domain kinases: regulation and substrate recognition
LIM 结构域激酶:调节和底物识别
- 批准号:
10443356 - 财政年份:2022
- 资助金额:
$ 171.5万 - 项目类别:
A Metabolic Engineering Strategy to Map Sialyltransferase Glycosites
绘制唾液酸转移酶糖位图的代谢工程策略
- 批准号:
10313364 - 财政年份:2021
- 资助金额:
$ 171.5万 - 项目类别:
A Metabolic Engineering Strategy to Map Sialyltransferase Glycosites
绘制唾液酸转移酶糖位图的代谢工程策略
- 批准号:
10468652 - 财政年份:2021
- 资助金额:
$ 171.5万 - 项目类别: