Intelligent and Automatic Image Segmentation Software for High ThroughputAnalysi
用于高通量分析的智能自动图像分割软件
基本信息
- 批准号:8522756
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-15 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAgingAgreementAlgorithmsAppearanceAreaArtificial IntelligenceBasic ScienceBiologicalBiologyBiometryBiopsy SpecimenCell NucleusCellular InfiltrationCharacteristicsChronic DiseaseClinical ResearchCommunitiesComputational ScienceComputer AssistedComputer softwareDataData AnalysesDefectDetectionDrug IndustryEosine YellowishExhibitsFiberFibrosisFreezingFutureGoalsHealthHeart failureHematoxylinHigh Performance ComputingHistologyHumanHuman PathologyImageImage AnalysisInterobserver VariabilityInterventionLearningMachine LearningMalignant NeoplasmsManualsMarketingMethodsModelingMorphologic artifactsMuscleMuscle FibersMuscle functionNIH Program AnnouncementsPerformancePhasePilot ProjectsPositioning AttributeProcessPropertyResearchResearch PersonnelResourcesSamplingScanningScienceScientistSeedsShapesSiteSkeletal MuscleSlideSmall Business Technology Transfer ResearchSpecimenSpeedStagingStaining methodStainsTechniquesTechnologyTimeTissuesUnited States National Institutes of HealthUpdateYangbasebioimagingbiomedical informaticscohortcomputer sciencedata acquisitiondesignfluorescence imagingimaging Segmentationimprovedinnovationmuscle formmuscle strengthnovelpublic health relevance
项目摘要
DESCRIPTION (provided by applicant): It is well established that aging and many chronic diseases, such as cancer and heart failure, are associated with significant losses in skeletal muscle mass and strength in humans. There is agreement across the muscle biology community that important morphological characteristics of muscle fibers, such as fiber area, the number and position of myonuclei, cellular infiltration and fibrosis are critical factors that determine the health and function of the muscle. However, at this time, quantification of muscle characteristics from standard histological and immunohistological techniques is still a manual or, at best, a semi-automatic process. This process is labor intensive and can be prone to errors, leading to high inter-observer variability. On the other hand, when muscle characteristics are calculated by computer-aided image analysis, data acquisition times decrease and objectivity improves significantly. The objective of this Phase I STTR project is to build a fully automatic, intelligent, and high throughput image acquisition and analysis software for quantitative muscle morphological analysis on digitized muscle cross-sections. We propose to utilize the most recent technical advances in machine learning and biomedical image analysis. This includes a newly developed deformable model and mean-shift based seed detection algorithm for better segmentation accuracy; an asymmetric online boosting based machine learning algorithm which allows the software to learn from errors and adjust its segmentation strategies adaptively; and a data parallelization schema using the graphic processing unit (GPU) to handle the computational bottleneck for extremely large scale image, such as whole slide scanned specimens. We believe that this software, equipped with the most advanced technical innovations, will be commercially attractive for the skeletal muscle research community including basic scientists, clinician scientists, and the pharmaceutical industry. The specific aim are: 1) Develop, implement, and validate an automatic biological image analysis software package for skeletal muscle tissue; 2) Develop a novel online updated intelligent artificial intelligence unit to enable the software to learn from errors; 3) Build a novel high performance computing unit to enable fast and high throughput automatic image analysis, which is capable of processing whole slide scanned muscle specimens. The analysis approach proposed will provide more consistent, accurate, and objective quantification of skeletal muscle morphological properties and the time for data analysis will be reduced by over a factor of 100 for standalone version and 2000 for parallel version. The long-term goal of Cytoinformatics, LLC for the Phase II stage is to apply the software to analyze histology/pathology from human muscle biopsy samples and extension of the software to other biological tissues, such as adipose tissue.
描述(由申请人提供):众所周知,衰老和许多慢性疾病,例如癌症和心力衰竭,与人类骨骼肌质量和力量的显着损失有关。肌肉生物学界一致认为,肌纤维的重要形态特征,如纤维面积、肌核的数量和位置、细胞浸润和纤维化是决定肌肉健康和功能的关键因素。然而,目前,通过标准组织学和免疫组织学技术对肌肉特征进行量化仍然是手动过程,或者充其量是半自动过程。这个过程是劳动密集型的,并且很容易出错,导致观察者之间的高度差异。另一方面,当通过计算机辅助图像分析计算肌肉特征时,数据采集时间减少,客观性显着提高。 STTR一期项目的目标是构建全自动、智能、高通量的图像采集和分析软件,用于数字化肌肉横截面的定量肌肉形态分析。我们建议利用机器学习和生物医学图像分析方面的最新技术进步。这包括新开发的可变形模型和基于均值漂移的种子检测算法,以实现更好的分割精度;基于非对称在线提升的机器学习算法,该算法允许软件从错误中学习并自适应地调整其分割策略;以及使用图形处理单元(GPU)的数据并行化模式来处理超大规模图像(例如整个载玻片扫描样本)的计算瓶颈。我们相信,该软件配备了最先进的技术创新,将对包括基础科学家、临床科学家和制药行业在内的骨骼肌研究界具有商业吸引力。具体目标是:1)开发、实施和验证骨骼肌组织自动生物图像分析软件包; 2)开发新型在线更新的智能人工智能单元,使软件能够从错误中学习; 3)构建新型高性能计算单元,实现快速、高通量的自动图像分析,能够处理整个幻灯片扫描的肌肉标本。所提出的分析方法将为骨骼肌形态特性提供更加一致、准确和客观的量化,并且数据分析时间将减少独立版本 100 倍以上、并行版本 2000 倍以上。 Cytoinformatics, LLC 第二阶段的长期目标是应用该软件分析人体肌肉活检样本的组织学/病理学,并将该软件扩展到其他生物组织,例如脂肪组织。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karyn A Esser其他文献
Karyn A Esser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karyn A Esser', 18)}}的其他基金
Molecular Transducers of Physical Activity Consortium Coordinating Center
体力活动分子传感器联盟协调中心
- 批准号:
10840609 - 财政年份:2017
- 资助金额:
$ 15万 - 项目类别:
相似国自然基金
ALA光动力上调炎症性成纤维细胞ZFP36抑制GADD45B/MAPK通路介导光老化皮肤组织微环境重塑的作用及机制研究
- 批准号:82303993
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
YAP1-TEAD通过转录调控同源重组修复介导皮肤光老化的作用机制
- 批准号:82371567
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
下丘脑乳头上核-海马齿状回神经环路在运动延缓认知老化中的作用及机制研究
- 批准号:82302868
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
KIAA1429介导MFAP4-m6A甲基化修饰在紫外线诱导皮肤光老化中的作用和机制研究
- 批准号:82373461
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10707354 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Yale Murine-TMC on Immune Cell Senescence Derived Inflammation
耶鲁小鼠-TMC 对免疫细胞衰老引起的炎症的研究
- 批准号:
10675111 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别:
Machine Learning-based Imaging Biomarkers for Metabolic and Age-related Diseases
基于机器学习的代谢和年龄相关疾病的成像生物标志物
- 批准号:
10556825 - 财政年份:2022
- 资助金额:
$ 15万 - 项目类别: