Tissue Engineering Strategies: Effects on Valvular Interstitial Cell Metabolism

组织工程策略:对瓣膜间质细胞代谢的影响

基本信息

  • 批准号:
    8241919
  • 负责人:
  • 金额:
    $ 7.63万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-06-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): PROJECT SUMMARY Principal Investigator: Kathryn Jane Grande-Allen, Ph.D. Heart valve disease mandates hospitalization for almost 100,000 Americans every year. Although some of the initial causes of valve disease are well recognized, the intermediate cell-mediated disease mechanisms are largely unknown. The only effective treatment for most valve diseases is surgical repair or replacement; there are no medical or therapeutic treatments for the prevention or amelioration of valve disease. The drive to dissect potential disease mechanisms and develop new medical therapies has invigorated research in valve biology. This field is in its infancy, but has nonetheless has witnessed many recent findings about contractile, synthetic, cell communication, adhesion, and signaling characteristics of valvular interstitial cells (VICs), especially as they relate to the tissue engineering of valves and the development of calcific aortic valve disease. Nonetheless, there has been scant investigation into the metabolism of valve cells. Although recent publications have addressed how oxygen diffusion and perfusion affects valve cells and tissue engineered valves, the topic of valvular cell metabolism remains largely unaddressed. Cells within normal adult valves maintain quiescence (even within such a mechanically active tissue), but show the capacity to become activated and alter their phenotype/behavior in response to various injury or disease conditions. This activation process is quite poorly characterized, leading to several questions about the fundamental metabolic rates of VICs under these quiescent and activated conditions. It is also unknown how this metabolic rate is influenced by the environment of the cell, meaning its pericellular matrix and level of mechanical or chemical stimulation. These issues are very important given the use of exogenous stimuli in the development of tissue engineered valves, and the roles of these factors in valve remodeling and disease progression. Indeed, metabolism is recognized as the first responder to environmental stresses for most cell types. To address these questions, this research proposes to determine the fundamental metabolic rates of VICs (Aim 1). The following 2 aims will examine the effect of cytokine and hypoxic stimulation (Aim 2) and mechanical stretch (Aim 3) on metabolic rates and metabolic gene expression by VICs. This research is significant because it will provide new and fundamental information about the metabolic rates of VICs under basal and stressed culture conditions, and will establish an important new direction in the field of valve cell biology. The resulting data will complement the work of other investigators examining oxygen consumption of VICs and valve leaflets, and will guide scientists and engineers developing tissue engineered valves. This work will also promote new avenues for valve disease research, since the valve cell responses (enabled by metabolism) likely contribute to disease progression, whether the initial cause was cardiac dilatation, infection, or a congenital malformation. Information about fatty acid metabolism would be relevant to the early stages of calcific aortic valve disease, since there is a growing incidence of this condition in the setting of obesity, diabetes, and metabolic syndrome. PUBLIC HEALTH RELEVANCE: Public Health Relevance Principal Investigator: Kathryn Jane Grande-Allen, Ph.D. Heart valve disease leads to hospitalization for almost 100,000 Americans every year, but the causes of heart valve disease are a mystery, especially because much of the behavior of heart valve cells has never been previously studied. This research will study the metabolism of heart valve cells, meaning how they use sugars, fatty acids, and lactate to create fuel for their activities such as migrating and making new proteins. This research will also examine how several conditions that are used to create tissue engineered heart valves affect this metabolism. This research is also relevant due to the growing incidence of aortic valve disease in the setting of obesity, diabetes, and metabolic syndrome.
描述(由申请人提供): 项目摘要 首席研究员:Kathryn Jane Grande-Allen 博士每年有近 10 万美国人因心脏瓣膜疾病而住院。尽管瓣膜疾病的一些最初原因已得到充分认识,但中间细胞介导的疾病机制在很大程度上尚不清楚。对于大多数瓣膜疾病,唯一有效的治疗方法是手术修复或置换;没有任何药物或治疗方法可以预防或改善瓣膜疾病。剖析潜在疾病机制和开发新的医学疗法的动力激发了瓣膜生物学的研究。该领域还处于起步阶段,但仍然见证了许多关于瓣膜间质细胞 (VIC) 的收缩、合成、细胞通讯、粘附和信号传导特征的最新发现,特别是因为它们与瓣膜的组织工程和瓣膜的发展有关。钙化性主动脉瓣疾病。尽管如此,对瓣膜细胞代谢的研究还很少。尽管最近的出版物讨论了氧扩散和灌注如何影响瓣膜细胞和组织工程瓣膜,但瓣膜细胞代谢的主题在很大程度上仍未得到解决。正常成人瓣膜内的细胞保持静止(即使在这种机械活跃的组织内),但显示出被激活并改变其表型/行为以响应各种损伤或疾病状况的能力。这种激活过程的表征相当差,导致了有关 VIC 在这些静态和激活条件下的基本代谢率的几个问题。还不清楚这种代谢率如何受到细胞环境的影响,即细胞周围基质以及机械或化学刺激水平。考虑到在组织工程瓣膜的发育中使用外源刺激,以及这些因素在瓣膜重塑和疾病进展中的作用,这些问题非常重要。事实上,新陈代谢被认为是大多数细胞类型对环境压力的第一反应者。为了解决这些问题,本研究建议确定 VIC 的基本代谢率(目标 1)。以下 2 个目标将检查细胞因子和低氧刺激(目标 2)和机械拉伸(目标 3)对 VIC 代谢率和代谢基因表达的影响。这项研究意义重大,因为它将提供有关VIC在基础和应激培养条件下代谢率的新的基础信息,并将在瓣膜细胞生物学领域建立一个重要的新方向。由此产生的数据将补充其他研究人员检查 VIC 和瓣膜小叶耗氧量的工作,并将指导科学家和工程师开发组织工程瓣膜。这项工作还将促进瓣膜疾病研究的新途径,因为瓣膜细胞反应(通过新陈代谢实现)可能有助于疾病进展,无论最初的原因是心脏扩张、感染还是先天性畸形。有关脂肪酸代谢的信息可能与钙化性主动脉瓣疾病的早期阶段相关,因为在肥胖、糖尿病和代谢综合征的情况下,这种疾病的发病率不断增加。 公共卫生相关性: 公共卫生相关性首席研究员:Kathryn Jane Grande-Allen 博士心脏瓣膜疾病每年导致近 100,000 名美国人住院,但心脏瓣膜疾病的原因一直是个谜,特别是因为心脏瓣膜细胞的大部分行为以前从未被研究过。这项研究将研究心脏瓣膜细胞的新陈代谢,这意味着它们如何利用糖、脂肪酸和乳酸为其迁移和制造新蛋白质等活动创造燃料。这项研究还将研究用于制造组织工程心脏瓣膜的几种条件如何影响这种新陈代谢。由于肥胖、糖尿病和代谢综合征背景下主动脉瓣疾病的发病率不断增加,这项研究也具有相关性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KATHRYN JANE GRANDE-ALLEN其他文献

KATHRYN JANE GRANDE-ALLEN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KATHRYN JANE GRANDE-ALLEN', 18)}}的其他基金

Differential Shear Forces on Endocardial Endothelial Cells Regulate a Fibrotic Spectrum in the Left Ventricular Outflow Tract
心内膜内皮细胞上的差异剪切力调节左心室流出道中的纤维化谱
  • 批准号:
    10170409
  • 财政年份:
    2018
  • 资助金额:
    $ 7.63万
  • 项目类别:
Engineering MicroEnvironment Core (EMEC)
工程微环境核心 (EMEC)
  • 批准号:
    10462790
  • 财政年份:
    2015
  • 资助金额:
    $ 7.63万
  • 项目类别:
Engineering MicroEnvironment Core (EMEC)
工程微环境核心 (EMEC)
  • 批准号:
    10192207
  • 财政年份:
    2015
  • 资助金额:
    $ 7.63万
  • 项目类别:
Engineering MicroEnvironment Core (EMEC)
工程微环境核心 (EMEC)
  • 批准号:
    10192207
  • 财政年份:
    2015
  • 资助金额:
    $ 7.63万
  • 项目类别:
Engineering MicroEnvironment Core (EMEC)
工程微环境核心 (EMEC)
  • 批准号:
    10642942
  • 财政年份:
    2015
  • 资助金额:
    $ 7.63万
  • 项目类别:
Tissue Engineering for Pediatric Applications
儿科应用的组织工程
  • 批准号:
    8257456
  • 财政年份:
    2011
  • 资助金额:
    $ 7.63万
  • 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
  • 批准号:
    8663737
  • 财政年份:
    2011
  • 资助金额:
    $ 7.63万
  • 项目类别:
Biomaterial Strategies for Tissue Engineering Pediatric Valves
组织工程儿科瓣膜的生物材料策略
  • 批准号:
    8315987
  • 财政年份:
    2011
  • 资助金额:
    $ 7.63万
  • 项目类别:
Biomaterial Strategies for Tissue Engineering Pediatric Valves
组织工程儿科瓣膜的生物材料策略
  • 批准号:
    8178833
  • 财政年份:
    2011
  • 资助金额:
    $ 7.63万
  • 项目类别:
Biomimetic micro-structured hydrogel scaffolds for tissue engineered heart valves
用于组织工程心脏瓣膜的仿生微结构水凝胶支架
  • 批准号:
    8086246
  • 财政年份:
    2011
  • 资助金额:
    $ 7.63万
  • 项目类别:

相似国自然基金

宫腔粘连子宫内膜NK细胞异常破坏间质稳态致内膜纤维化的机制研究
  • 批准号:
    82371641
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
  • 批准号:
    82305302
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
组胺通过调控Th1/Th2平衡促进宫腔粘连的机制研究
  • 批准号:
    82360298
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
SPP1+M2巨噬细胞促进宫腔粘连内膜纤维化的机制和干预研究
  • 批准号:
    82371636
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:

相似海外基金

Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
  • 批准号:
    10679796
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
Development and Translation of Granulated Human-Derived Biomaterials for Integrative Cartilage Repair
用于综合软骨修复的颗粒状人源生物材料的开发和转化
  • 批准号:
    10718170
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
Interplay between multifocal optics and accommodation: implications for myopia progression
多焦点光学器件与调节之间的相互作用:对近视进展的影响
  • 批准号:
    10637313
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
The role of LTBP2 in glaucoma
LTBP2在青光眼中的作用
  • 批准号:
    10608873
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
Novel treatments for Autoimmune Disease
自身免疫性疾病的新疗法
  • 批准号:
    10758915
  • 财政年份:
    2023
  • 资助金额:
    $ 7.63万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了