The Protein Degradation Pathway after Brain Ischemia
脑缺血后蛋白质降解途径
基本信息
- 批准号:8666528
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:ATP phosphohydrolaseAnimalsAreaAutophagocytosisAutophagosomeBiologicalBrain IschemiaCell Culture TechniquesCellular StructuresCessation of lifeChimeric ProteinsClinicalDNA DamageDegradation PathwayDiseaseFailureFunctional disorderGenerationsGenesGeneticHemorrhageImpairmentIschemiaIschemic Brain InjuryIschemic Neuronal InjuryLeadLightLysosomesMitochondriaMitochondrial DNAModelingMolecularN-ethylmaleimide-sensitive proteinNeuronal InjuryNeuronsOrganellesPathologicPathway interactionsPhenotypeProtein DeficiencyProteinsRenaissanceRoleRouteShockSystemTestingTimeTransgenic MiceTraumatic Brain InjuryUbiquitinVacuoleVeteransbasecell injuryeffective therapygain of functionmouse modelnervous system disorderneuroprotectionoverexpressionpresynapticpreventprotein aggregateprotein aggregationprotein degradationpublic health relevancetreatment strategy
项目摘要
DESCRIPTION (provided by applicant):
Ischemic brain injury is a common disorder among veterans, but the underlying mechanisms of it are not completely understood. Our latest studies strongly suggest that abnormal protein aggregation and multi-organelle damage lead to delayed neuronal death after brain ischemia. There are two major routes for clearance of protein aggregates and damaged organelles: (i) the ubiquitin-proteasomal system; and (ii) the autophagy pathway. Very recently, a renaissance in the autophagy field has shed light on many areas of biological diseases. The autophagy pathway is the chief route for bulk degradation of protein aggregates and aberrant organelles. Failure of autophagy leads to accumulation of protein aggregates and aberrant organelles, resulting in delayed neuronal death. The objective of this proposal is to study the impairment of
autophagy after brain ischemia. The hypothesis is that brain ischemia leads to disruption of the autophagy pathway via irreversible inactivation of N-ethylmaleimide-sensitive fusion protein (NSF) ATPase, resulting in multiple organelle damage/failure and delayed neuronal death. Our latest studies show that accumulation of: (i) autophagy vacuoles (AVs), (ii) protein aggregates, and (iii) aberrant organelles are the most prominent early ultrastructural changes in neurons after brain ischemia. These new results clearly indicate that the autophagy pathway is severely damaged after brain ischemia. Our studies further show that impairment of the autophagy pathway is mainly attributable to irreversible inactivation of NSF after brain ischemia. NSF is the key ATPase for AV-to-lysosome fusion, and is completely inactivated in neurons undergoing delayed neuronal death after brain ischemia. We therefore generated an NSF- deficient transgenic mouse line. The dominant pathologic phenotype of this transgenic mouse line is continuous buildup of AVs and damaged organelles, which is followed by delayed neuronal death, virtually replicating the pathological changes observed after brain ischemia. Aim 1 will study the mechanisms of autophagy impairment after brain ischemia by analyzing all key autophagy and NSF-related proteins. We will investigate: (i) whether the autophagy pathway fails to keep up with the generation of damaged organelles after brain ischemia; (ii) if this failure is due to malfunction of the NSF-dependent AV-to-lysosome fusion; (iii) whether NSF inactivation contributes to selective neuronal vulnerability; and (iv) if presynaptic NSF-related presynaptic proteins also contribute to ischemic neuronal injury. Aim 2 will investigate the specific role of NSF in the impairment of the autophagy pathway after brain ischemia by using inducible and neuron-specific NSF loss/gain-of-function mouse models. This aim will test the prediction that NSF deficiency will disrupt the autophagy pathway, leading to delayed neuronal death, whereas overexpression of functional NSF will restore autophagy deficiency and offer neuroprotection after brain ischemia. Aim 3 will explore: (i) ischemia-induced dysfunction of the autophagic clearance of damaged mitochondria; and (ii) if an increase in autophagic load by mtDNA damage leads to more severe ischemic neuronal injury. We will test this hypothesis in a quantitative manner using an inducible and neuron-specific mitochondrial DNA damage mouse model. This multi-approach proposal should provide key information about the mechanisms underlying the autophagy impairment and new strategies for treatment of ischemic brain injury.
描述(由申请人提供):
缺血性脑损伤是退伍军人中常见的疾病,但尚未完全理解其基本机制。我们的最新研究强烈表明,异常的蛋白质聚集和多器官损伤导致脑缺血后神经元死亡延迟。清除蛋白质聚集体和受损细胞器的主要途径有两种:(i)泛素 - 蛋白酶体系统; (ii)自噬途径。最近,自噬领域的文艺复兴已经揭示了许多生物疾病。自噬途径是蛋白质聚集体和异常细胞器的大量降解的主要途径。自噬的失败会导致蛋白质聚集体和异常细胞器的积累,导致神经元死亡延迟。 该提案的目的是研究
脑缺血后自噬。假设是,脑缺血导致自噬途径通过不可逆地失活N-乙基甲基酰亚胺敏感的融合蛋白(NSF)ATPase破坏,从而导致多个细胞器损伤/失败/失败和延迟神经元死亡。 我们的最新研究表明:(i)自噬液泡(AV),(ii)蛋白质聚集体和(iii)异常细胞器是脑缺血后神经元中最突出的早期超微结构变化。这些新结果清楚地表明,脑缺血后自噬途径严重损害。我们的研究进一步表明,自噬途径的损害主要归因于脑缺血后NSF的不可逆失活。 NSF是AV到溶质体融合的关键ATPase,并且在脑缺血后神经元死亡的神经元中完全灭活。因此,我们生成了NSF缺陷的转基因小鼠系。该转基因小鼠系的主要病理表型是对AV和受损细胞器的连续积累,随后是延迟的神经元死亡,实际上复制了脑缺血后观察到的病理变化。 AIM 1将通过分析所有关键的自噬和与NSF相关的蛋白质来研究脑缺血后自噬损伤的机制。我们将研究:(i)自噬途径是否无法跟上脑缺血后的细胞器的产生; (ii)如果这种失败是由于NSF依赖性的AV散糖体融合的故障; (iii)NSF失活是否有助于选择性神经元脆弱性; (iv)如果突触前NSF相关的突触前蛋白也会导致缺血性神经元损伤。 AIM 2将通过使用诱导和神经元特异性的NSF损失/功能性小鼠模型来研究NSF在脑缺血后自噬途径损害中的特定作用。该目标将测试NSF缺乏症会破坏自噬途径的预测,导致神经元死亡延迟,而功能NSF的过表达将恢复自噬缺陷并在脑部缺血后提供神经保护作用。 AIM 3将探索:(i)缺血引起的线粒体自噬清除功能障碍; (ii)如果mtDNA损伤增加自噬负荷会导致更严重的缺血性神经元损伤。 我们将使用诱导和神经元特异性的线粒体DNA损伤小鼠模型以定量方式检验该假设。该多诉提议应提供有关自噬损伤和治疗缺血性脑损伤的新策略的基础机制的关键信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bingren Hu其他文献
Bingren Hu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bingren Hu', 18)}}的其他基金
Testing Cerebroprotective Interventions with Rodent Ischemic Stroke Models
用啮齿动物缺血性中风模型测试脑保护干预措施
- 批准号:
10588601 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The Role of Lysosomal Membrane Permeabilization and Cathepsin B Release in Stroke Brain Injury
溶酶体膜透化和组织蛋白酶 B 释放在中风脑损伤中的作用
- 批准号:
10736263 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Novel Anti-Stroke Agents Targeting Toxic Protein Aggregation
针对有毒蛋白聚集的新型抗中风药物
- 批准号:
10589978 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Change in NSF ATPase activity Leads to Brain Ischemia Reperfusion Injury
NSF ATP酶活性变化导致脑缺血再灌注损伤
- 批准号:
10748602 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Novel anti-NPC aggregation strategy against brain ischemia-reperfusion injury
抗脑缺血再灌注损伤的新型抗NPC聚集策略
- 批准号:
10747258 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Change in NSF ATPase activity Leads to Brain Ischemia Reperfusion Injury
NSF ATP酶活性变化导致脑缺血再灌注损伤
- 批准号:
10115142 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Novel anti-NPC aggregation strategy against brain ischemia-reperfusion injury
抗脑缺血再灌注损伤的新型抗NPC聚集策略
- 批准号:
9311808 - 财政年份:2017
- 资助金额:
-- - 项目类别:
An Innovative Approach to Study Alzheimer Disease Blood Biomarkers
研究阿尔茨海默病血液生物标志物的创新方法
- 批准号:
9251737 - 财政年份:2016
- 资助金额:
-- - 项目类别:
EM STUDY OF THE AUTOPHAGY PATHWAY AFTER BRAIN ISCHEMIA
脑缺血后自噬途径的电镜研究
- 批准号:
8169624 - 财政年份:2010
- 资助金额:
-- - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
使用三代测序技术研究线粒体DNA非编码区域对其DNA复制和转录的调控
- 批准号:31701089
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Dissecting the structural origin of relaxation in skeletal muscle
剖析骨骼肌松弛的结构起源
- 批准号:
10567284 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Chromatin-mediated maintenance of genomic integrity in germ cells
染色质介导的生殖细胞基因组完整性的维持
- 批准号:
10291840 - 财政年份:2021
- 资助金额:
-- - 项目类别:
ABCA7 dysfunction in Alzheimer's disease pathogenesis
ABCA7 功能障碍在阿尔茨海默病发病机制中的作用
- 批准号:
10212863 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Role of brain lipid metabolism in Alzheimer's disease
脑脂质代谢在阿尔茨海默病中的作用
- 批准号:
10334516 - 财政年份:2020
- 资助金额:
-- - 项目类别: