Innovative Research Methods to Study Children with Multiple Chronic Conditions

研究患有多种慢性病的儿童的创新研究方法

基本信息

  • 批准号:
    8726574
  • 负责人:
  • 金额:
    $ 17.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2015-10-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Children with multiple chronic conditions - two or more chronic conditions that affect the person at the same time - represent an important group of individuals who receive inadequate quality of healthcare and experience suboptimal health outcomes. Clinicians, researchers, administrators, and policy experts are currently uninformed on how to best improve care for these children. This is, in part, because of two methodological challenges that are particularly problematic when studying children with multiple chronic conditions: 1) the ability to comprehensively measure and group comorbid conditions in children and 2) the ability to assess pediatric comorbidity burden on a population level. This proposal will validate and test an innovative set of methods that will help overcome these challenges. Although the set of methods, collectively, is new to the study of children with multiple chronic conditions, we have found components of the set to be feasible and valuable in our prior work. The specific aims of this proposal are 1) to adapt for children a publicly available diagnosis classification scheme (i.e., AHRQ's Chronic Condition Indicator and Clinical Classification System) to name and count coexisting chronic conditions in children; 2) to determine the prevalence and the healthcare cost and utilization (total and excessive) of each type of child with multiple chronic conditions; 3) to complete an evidenced-based prioritization process, based on the Pareto Principle, to describe the relative contribution of combinations of chronic conditions to prevalence and to healthcare cost and utilization; and 4) to employ an innovative, machine learning method (i.e., regression tree boosting) to systematically assess every interaction of coexisting chronic conditions in children to predict healthcare cost and utilization The proposed work will be conducted in existing datasets that contain 10.7 million children with comprehensive Medicaid claims data (i.e., community, emergency, home, inpatient, outpatient, pharmacy care, etc.) from 28 states as well as 3.7 million hospitalized children from the all-payer, nationally-representative Healthcare Cost and Utilization Project Kids' Inpatient Database developed by Agency for Healthcare Research and Quality. Use of the methods and results generated from this proposal will help clinics, hospitals, communities, states, health systems, payers, federal agencies, and others identify children with multiple chronic conditions, describe their coexisting conditions, determine which of these children have the largest impact on the pediatric healthcare system, and quantify how much of their health care cost and utilization could be avoided with high quality of care. This information will help prioritize which subgroups of children with multiple chronic conditions to target for comparative effectiveness research, quality improvement initiatives, and health system redesign. This proposal is aligned with the mission of the Agency for Healthcare Research and Quality to improve the quality of health care for all Americans.
描述(由申请人提供):具有多种慢性疾病的儿童 - 同时影响该人的两个或多个慢性疾病 - 代表了一群重要的个人,他们获得了不足的医疗保健质量并经历了次优健康结果。目前,临床医生,研究人员,管理人员和政策专家在如何最好地改善这些孩子的护理方面不知情。这部分是因为在研究具有多种慢性疾病的儿童时特别有问题的方法:1)能够全面衡量儿童的疾病和组合性疾病,以及2)评估人口水平上的儿科合并症负担的能力。该提议将 验证和测试一套创新的方法,这些方法将有助于克服这些挑战。尽管总体而言,一组方法是对具有多种慢性疾病的儿童的研究,但我们发现该集合的组成部分在我们的先前工作中是可行且有价值的。该提案的具体目的是1)适应儿童公开可用的诊断分类计划(即AHRQ的慢性病指标和临床分类系统),以命名和计算儿童的慢性病; 2)确定每种具有多种慢性病的儿童的患病率和医疗保健成本和利用率(总和过度); 3)基于帕累托原则,以完成基于经验的优先级过程,以描述慢性条件对患病率以及医疗保健成本和利用率的相对贡献;和4)采用一种创新的机器学习方法(即,回归树的增强)来系统地评估儿童共存的慢性状况的每一次相互作用,以预测医疗保健成本和利用情况,将在现有数据集中进行1070万儿童与全面的医疗援助索赔的现有数据集中(I.E.来自全付款人,全国代表性的医疗保健成本和利用率项目的儿童由医疗保健研究和质量机构开发的儿童住院数据库。该提案产生的方法和结果的使用将有助于诊所,医院,社区,州,卫生系统,付款人,联邦机构以及其他识别患有多种慢性病的儿童,描述他们的共存状况,确定哪些孩子对儿科保健系统产生最大影响,并量化其医疗保健成本和利用能量和利用的高品质,可以高品质地提供高质量的医疗服务。该信息将有助于优先考虑哪些具有多个慢性病的儿童的子组,以针对比较有效性研究,质量改进计划以及卫生系统重新设计。该提案与医疗保健研究和质量机构的使命保持一致,以提高所有美国人的医疗保健质量。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Contributions of Children With Multiple Chronic Conditions to Pediatric Hospitalizations in the United States: A Retrospective Cohort Analysis.
  • DOI:
    10.1542/hpeds.2016-0179
  • 发表时间:
    2017-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Berry, Jay G;Ash, Arlene S;Hall, Matt
  • 通讯作者:
    Hall, Matt
Healthcare Utilization and Spending for Constipation in Children With Versus Without Complex Chronic Conditions.
患有和不患有复杂慢性病的儿童便秘的医疗保健利用和支出。
  • DOI:
    10.1097/mpg.0000000000001210
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Stephens,JohnR;Steiner,MichaelJ;DeJong,Neal;Rodean,Jonathan;Hall,Matt;Richardson,Troy;Berry,JayG
  • 通讯作者:
    Berry,JayG
Use of Post-Acute Facility Care in Children Hospitalized With Acute Respiratory Illness.
因急性呼吸道疾病住院的儿童使用急性后设施护理。
  • DOI:
    10.12788/jhm.2780
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Berry,Jay;Wilson,Karen;Dumas,Helene;Simpser,Edwin;O'Brien,Jane;Whitford,Kathleen;May,Rachna;Mittal,Vineeta;Murphy,Nancy;Steinhorn,David;Agrawal,Rishi;Rehm,Kris;Marks,Michelle;Traul,Christine;Dribbon,Michael;Haines,Christophe
  • 通讯作者:
    Haines,Christophe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jay Griffin Berry其他文献

Jay Griffin Berry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jay Griffin Berry', 18)}}的其他基金

Improving Healthcare Integration for Children with Tracheostomy
改善气管切开儿童的医疗保健一体化
  • 批准号:
    8329716
  • 财政年份:
    2009
  • 资助金额:
    $ 17.98万
  • 项目类别:
Improving Healthcare Integration for Children with Tracheostomy
改善气管切开儿童的医疗保健一体化
  • 批准号:
    7589923
  • 财政年份:
    2009
  • 资助金额:
    $ 17.98万
  • 项目类别:
Improving Healthcare Integration for Children with Tracheostomy
改善气管切开儿童的医疗保健一体化
  • 批准号:
    8513378
  • 财政年份:
    2009
  • 资助金额:
    $ 17.98万
  • 项目类别:
Improving Healthcare Integration for Children with Tracheostomy
改善气管切开儿童的医疗保健一体化
  • 批准号:
    7904156
  • 财政年份:
    2009
  • 资助金额:
    $ 17.98万
  • 项目类别:
Improving Healthcare Integration for Children with Tracheostomy
改善气管切开儿童的医疗保健一体化
  • 批准号:
    8129630
  • 财政年份:
    2009
  • 资助金额:
    $ 17.98万
  • 项目类别:

相似国自然基金

需求与技术双驱动的数智赋能新能源汽车创新设计决策方法研究
  • 批准号:
    72371066
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
利用深度学习方法开发创新高精度城市风速及污染物扩散的预测模型研究
  • 批准号:
    42375193
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
离散几何在建筑计算性设计中的应用技术体系与创新方法研究
  • 批准号:
    52378043
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
人机智能协同指导研究生算法创新的方法研究
  • 批准号:
    62277022
  • 批准年份:
    2022
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
多源数据驱动的VR康复训练产品评估与创新设计方法研究
  • 批准号:
    52205275
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 17.98万
  • 项目类别:
RP5 MPT Study
RP5 MPT 研究
  • 批准号:
    10595905
  • 财政年份:
    2023
  • 资助金额:
    $ 17.98万
  • 项目类别:
A novel peptide assay for hepcidin clinical monitoring
一种用于铁调素临床监测的新型肽测定方法
  • 批准号:
    10698746
  • 财政年份:
    2023
  • 资助金额:
    $ 17.98万
  • 项目类别:
Center for Suicide Research and Prevention
自杀研究与预防中心
  • 批准号:
    10575947
  • 财政年份:
    2023
  • 资助金额:
    $ 17.98万
  • 项目类别:
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
  • 批准号:
    10713637
  • 财政年份:
    2023
  • 资助金额:
    $ 17.98万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了