Novel Mitochondrial Ion Transporters
新型线粒体离子转运蛋白
基本信息
- 批准号:8676919
- 负责人:
- 金额:$ 45.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-15 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATP Synthesis PathwayAnionsAreaArrhythmiaBioenergeticsBiological AssayCLIC4 geneCalciumCalcium-Activated Potassium ChannelCardiacCarrier ProteinsCationsCell DeathCell modelCellsCystic Fibrosis Transmembrane Conductance RegulatorEquilibriumFractionationFunctional disorderFundingGABA ReceptorGoalsHeartHomeostasisHydrogenInner mitochondrial membraneIon ChannelIon TransportIonsIschemiaKCNJ1 geneLearningLinkMass Spectrum AnalysisMediatingMembraneMessenger RNAMitochondriaMitochondrial ProteinsMitochondrial SwellingModificationMolecularMolecular BiologyMonovalent CationsMovementMuscle ContractionMutagenesisOxidantsOxidation-ReductionOxidative StressPathway interactionsPermeabilityPhysiologicalPotassium ChannelPredispositionPrincipal InvestigatorProcessProductionProtein FamilyProteinsProteomeProteomicsProtonsRNA SplicingRegulationReperfusion InjuryReperfusion TherapyReportingResearchRoleSimulateSodiumStressTechniquesTissuesTranslationsVariantWaterWorkloadantiporterbasedesigngamma-Aminobutyric Acidgenetic manipulationinhibitor/antagonistinward rectifier potassium channelmitochondrial K(ATP) channelmitochondrial membranenoveloverexpressionprogramsprotein purificationresponsetooltraffickinguptake
项目摘要
DESCRIPTION (provided by applicant): Proton transport across the mitochondrial inner membrane provides the protonmotive force for ATP synthesis, but the importance of the transport of other ions (e.g. K+, Na+, Ca2+, and anions) in the regulation of bioenergetics has become increasingly evident in recent years. Over the past several years, our focus has been on three main areas, i) characterizing the K+ uptake pathways involved in protection against ischemic damage, ii) understanding how Na+ and Ca2+ dynamics impact energy supply and demand balance, and iii) characterizing how inner membrane oxidant-sensitive energy dissipating channels are activated by stress. While much has been learned using pharmacological tools and manipulation of ion gradients in isolated mitochondria, cells, and intact hearts, a major limitation has been the lack of molecular information about the proteins mediating ion transport in the inner membrane. Based on an exhaustive protein purification and fractionation strategy, and the team approach undertaken during the prior funding period designed to fully characterize the mitochondrial proteome and its modifications during ischemia- reperfusion, we have been successful in identifying a number of novel, high confidence candidates that we believe underlie important K+, Na+ and Ca2+ transport pathways in the mitochondrial inner membrane. Intriguingly, we have also identified novel mitochondrial anion transporters that could prove to be involved in the regulation of mitochondrial function. This project will combine molecular techniques for manipulating the expression levels of mitochondrial proteins identified by mass spectrometry with functional assays in isolated mitochondria and cells to correlate a particular ion transport pathway with its corresponding protein. Based on evidence already obtained by mass spectrometry, we believe we are on track to unequivocally resolve the molecular entities comprising the pore forming subunits of the mitochondrial ATP-sensitive (mitoKATP) and calcium-activated (mitoKCa) potassium channels, and are currently pursuing strong candidates that could mediate mitochondrial sodium calcium exchange (mNCE) and monovalent cation-hydrogen exchange (KHE or NHE). We will also investigate the possible functional role of identified, but uncharacterized, anion transporters that may be involved in mitochondrial volume regulation and the response to oxidative stress. The ultimate goal of the project is to overcome a significant roadblock to progress in the area of mitochondrial biology - the molecular identification of ion transport proteins that are critical to normal function and to the pathophysiology of ischemia-reperfusion.
描述(由申请人提供):穿过线粒体内膜的质子运输为 ATP 合成提供质子动力,但其他离子(例如 K+、Na+、Ca2+ 和阴离子)运输在生物能调节中的重要性已变得越来越重要近年来明显。在过去的几年里,我们的重点一直在三个主要领域,i) 描述参与预防缺血性损伤的 K+ 吸收途径,ii) 了解 Na+ 和 Ca2+ 动态如何影响能量供需平衡,以及 iii) 描述内部如何影响能量供应和需求平衡。膜上的氧化敏感能量耗散通道被压力激活。虽然使用药理学工具和操纵分离的线粒体、细胞和完整心脏中的离子梯度已经了解了很多,但主要的限制是缺乏有关介导内膜离子转运的蛋白质的分子信息。基于详尽的蛋白质纯化和分级分离策略,以及在先前资助期间采取的旨在充分表征线粒体蛋白质组及其在缺血再灌注过程中的修饰的团队方法,我们已经成功地鉴定了许多新颖的、高可信度的候选物,我们相信这是线粒体内膜中重要的 K+、Na+ 和 Ca2+ 转运途径的基础。有趣的是,我们还发现了新型线粒体阴离子转运蛋白,它们可能参与线粒体功能的调节。该项目将把通过质谱鉴定的用于操纵线粒体蛋白表达水平的分子技术与分离的线粒体和细胞中的功能测定相结合,以将特定的离子转运途径与其相应的蛋白质相关联。基于质谱已获得的证据,我们相信我们正在明确解析包含线粒体 ATP 敏感 (mitoKATP) 和钙激活 (mitoKCa) 钾通道的成孔亚基的分子实体,并且目前正在寻求强有力的方法。可以介导线粒体钠钙交换(mNCE)和单价阳离子氢交换(KHE 或 NHE)的候选者。我们还将研究已识别但未表征的阴离子转运蛋白的可能功能作用,这些阴离子转运蛋白可能参与线粒体体积调节和氧化应激反应。该项目的最终目标是克服线粒体生物学领域进展的一个重大障碍——对正常功能和缺血再灌注病理生理学至关重要的离子转运蛋白的分子鉴定。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian O'Rourke其他文献
Brian O'Rourke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian O'Rourke', 18)}}的其他基金
Redox Modification of the Arrhythmic Substrate in Heart Failure
心力衰竭中心律失常基质的氧化还原修饰
- 批准号:
8402615 - 财政年份:2011
- 资助金额:
$ 45.51万 - 项目类别:
Seahorse Bioscience Extracellular Flux Analyzer
Seahorse Bioscience 细胞外通量分析仪
- 批准号:
8052109 - 财政年份:2011
- 资助金额:
$ 45.51万 - 项目类别:
Redox Modification of the Arrhythmic Substrate in Heart Failure
心力衰竭中心律失常基质的氧化还原修饰
- 批准号:
8602853 - 财政年份:2011
- 资助金额:
$ 45.51万 - 项目类别:
Redox Modification of the Arrhythmic Substrate in Heart Failure
心力衰竭中心律失常基质的氧化还原修饰
- 批准号:
8242675 - 财政年份:2011
- 资助金额:
$ 45.51万 - 项目类别:
Redox Modification of the Arrhythmic Substrate in Heart Failure
心力衰竭中心律失常基质的氧化还原修饰
- 批准号:
8013364 - 财政年份:2011
- 资助金额:
$ 45.51万 - 项目类别:
相似国自然基金
基于胺/硫醇一步溶液法制备多阴离子V-VI-VII硫卤化物薄膜太阳能电池
- 批准号:22309158
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于阴离子调控价态转移的光诱导铁催化聚烯烃的C(sp3)−H氧化氮化反应
- 批准号:22371223
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
手性氢键供体与阴离子结合催化乙烯基醚的立体选择性阳离子聚合
- 批准号:22301279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长链阴离子捕收剂对胺类捕收剂反浮选赤铁矿的优化及其泡沫调控机制
- 批准号:52364029
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
阴离子调控的Pd(0)催化烯烃亲核钯化反应研究
- 批准号:22301210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
DNA replication linked chromatin assembly in yeast
酵母中 DNA 复制相关的染色质组装
- 批准号:
7413963 - 财政年份:1997
- 资助金额:
$ 45.51万 - 项目类别: