Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
基本信息
- 批准号:8612912
- 负责人:
- 金额:$ 32.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-15 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureAreaArsenicBangladeshBiologicalBlood PressureBody mass indexCardiovascular DiseasesCharacteristicsClinical TreatmentClinical TrialsCommunitiesComplexCoupledDataData SetDevelopmentDiseaseEnvironmentEnvironmental Risk FactorEpidemiologyEpigenetic ProcessEtiologyGene ExpressionGene Expression ProfileGenesGeneticGenetic StructuresGenetic VariationGenomeGenomicsGenotypeGoalsGroup StructureHealthHormonesHumanIndividualInvestigationJointsLicensingMeasuresMethodsModelingMultivariate AnalysisNetwork-basedNoiseOutcomePathway interactionsPatternPhenotypePortraitsPositioning AttributeProceduresQuantitative Trait LociResearchResearch PersonnelResourcesRisk FactorsRoleSamplingSignal TransductionSkin CancerStagingStatistical MethodsSystemTestingToxic effectTranscriptVariantWorkbasecomputerized toolscost effectivedata integrationflexibilityfunctional groupgene environment interactiongenetic variantgenome-widehuman diseaseimprovedinsightmembermethod developmentnon-genomicnovelnovel strategiesopen sourcepopulation basedpublic health relevancerare variantscreeningsoftware developmentstatisticstooltraittreatment effect
项目摘要
Summary
In order to understand the genomic architecture and etiology for complex human diseases, great efforts have
been extended in the past decades on research involving genome-wide genetic variation, transcriptome, and
other genomic information. To date, rich resources have been generated and most are made publicly available
after being analyzed for respective primary goals/hypotheses. Yet our understandings of human disease
mechanisms are just beginning, and those understandings would require both the identification of a cadre of
genetic and epigenetic risk factors, and the integration of key factors into a synergistic system. To best utilize
existing data and facilitate research on complex human diseases, the long-term objective of the proposed
research is to develop powerful and efficient statistical methods and computational tools for multivariate
analyses in mainly two areas: association studies with the integration of genomic and non-genomic information
in order to further identify genetic variation for complex diseases; and integrative genomic analyses that jointly
analyze genetic variation, transcriptome, and other information in the genome. In Aim 1, we propose novel and
powerful methods for gene-based association tests, for identification of genetic variation associated with
multivariate disease profiles, and for gene-based gene-environment interaction tests. In Aim 2, we develop
regularized methods for construction and comparison of eQTL networks. The later can also be used to reveal
important genetic variants and regulatory relationships through characterizing the changes in genetic
regulatory patterns across different phenotypic or environmental groups. Much of our proposed work is
motivated by and will be applied to a genetic-genomic study on arsenic toxicity, Gene-Environment Multi-
phenotype Study (GEMS). In Aim 3, we propose methods tailored for the characteristics of this data set; we will
also test novel scientific hypotheses on this unique and large arsenic toxicity study. Our proposal is cost-
effective as it analyzes existing data from GEMS while providing methods and tools for new research directions.
We anticipate that the proposed method development, when applied to and beyond the arsenic toxicity data,
would yield valuable insights on clinical trial treatment effects, and on disease etiology for several complex
diseases/traits, including but not limited to, arsenic-related skin cancer, cardiovascular diseases, hormone
measures, body mass index and blood pressure.
概括
为了了解复杂人类疾病的基因组结构和病因学,人们付出了巨大的努力
在过去的几十年中,涉及全基因组遗传变异、转录组和
其他基因组信息。迄今为止,已经产生了丰富的资源,并且大部分资源已公开
在对各自的主要目标/假设进行分析之后。然而我们对人类疾病的理解
机制才刚刚开始,这些谅解需要确定一支骨干队伍
遗传和表观遗传风险因素,以及将关键因素整合到协同系统中。充分利用
现有数据并促进对复杂人类疾病的研究,是拟议的长期目标
研究的目的是开发强大而高效的多元统计方法和计算工具
主要分析两个领域:基因组和非基因组信息整合的关联研究
为了进一步识别复杂疾病的遗传变异;和综合基因组分析,共同
分析基因组中的遗传变异、转录组和其他信息。在目标 1 中,我们提出新颖且
基于基因的关联测试的强大方法,用于识别与
多变量疾病概况,以及基于基因的基因-环境相互作用测试。在目标 2 中,我们开发
eQTL 网络构建和比较的正则化方法。后者也可以用来揭示
通过表征遗传的变化来确定重要的遗传变异和调控关系
不同表型或环境群体的监管模式。我们提议的大部分工作是
受到砷毒性基因-环境多基因组研究的推动并将应用于砷毒性的基因-环境多基因组研究
表型研究(GEMS)。在目标 3 中,我们提出了针对该数据集特征量身定制的方法;我们将
还在这项独特的大型砷毒性研究中测试新颖的科学假设。我们的建议是成本-
它有效地分析了 GEMS 的现有数据,同时为新的研究方向提供了方法和工具。
我们预计所提出的方法开发当应用于砷毒性数据并超出砷毒性数据时,
将为临床试验治疗效果以及多种复杂疾病的病因学提供有价值的见解
疾病/特征,包括但不限于砷相关皮肤癌、心血管疾病、激素
测量、体重指数和血压。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin Chen其他文献
Lin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin Chen', 18)}}的其他基金
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
10162318 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
9206508 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
8805844 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
10412060 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
- 批准号:
8633443 - 财政年份:2013
- 资助金额:
$ 32.23万 - 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
- 批准号:
8486199 - 财政年份:2013
- 资助金额:
$ 32.23万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Cytoskeleton-mediated regulation of insulin secretion hot spots in pancreatic beta cells
细胞骨架介导的胰腺β细胞胰岛素分泌热点的调节
- 批准号:
10679903 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别:
Molecular and functional architecture of a premotor circuit for decision making
用于决策的前运动电路的分子和功能架构
- 批准号:
10651389 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别:
2/3 Akili: Phenotypic and genetic characterization of ADHD in Kenya and South Africa
2/3 Akili:肯尼亚和南非 ADHD 的表型和遗传特征
- 批准号:
10637187 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别:
Hypothalamic Sleep-Wake Neuron Defects in Alzheimer’s disease
阿尔茨海默病中的下丘脑睡眠-觉醒神经元缺陷
- 批准号:
10770001 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别:
Molecular Mechanisms of Mitochondrial Biogenesis
线粒体生物发生的分子机制
- 批准号:
10735778 - 财政年份:2023
- 资助金额:
$ 32.23万 - 项目类别: