Dynamic 3D interplay of primary human salivary cells and the basement membrane
人类原代唾液细胞和基底膜的动态 3D 相互作用
基本信息
- 批准号:8783875
- 负责人:
- 金额:$ 5.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:Acinar CellAcinus organ componentAddressBasement membraneBiologicalBiological ModelsBiomechanicsCell SurvivalCell physiologyCellsCollaborationsComputer SimulationConnexinsCuesDepositionDevelopmentDiagnosisEncapsulatedEngineeringEvaluationExcisionExertionExtracellular MatrixFeedbackFluorescence MicroscopyFrequenciesFutureGelGlandGoalsGrantGrowthHead and Neck CancerHealthHumanHyaluronic AcidHydrogelsImageIn VitroIntegrinsInterventionLeadLifeMaintenanceManuscriptsMapsMasticationMeasuresMechanicsMediatingMentorshipModelingMolecularMovementNatural regenerationNeurotransmittersNuclearOral healthParotid GlandPatientsPositioning AttributeProcessProteinsQuality of lifeRadiation therapyRattusResearchResearch PersonnelResectedResolutionRiskRoleRotationSalivarySalivary Gland TissueSalivary GlandsSerousShapesSignal TransductionSignaling MoleculeStagingStandardizationStructureSurgical ReplantationSymptomsSystemTissue EngineeringTissuesTractionTrainingTranslationsWritingXerostomiabasecancer therapycareercell assemblycell motilitycell typedriving forceextracellularfluorescence imaginghead and neck cancer patientin vitro Modelin vivoirradiationlight microscopyloss of functionmigrationmultidisciplinarynovelpolarized cellresponsesalivary cellscaffoldskillstime usetumor
项目摘要
DESCRIPTION (provided by applicant): Head and neck cancer treatments that require the resection of glandular tissue in combination with irradiation therapy cause significant damage to target and surrounding tissues. Salivary glands are vulnerable and when compromised, a loss of function causes hyposalivation and 'dry mouth' (xerostomia) that lead to an increase in oral health risk and a decline in quality of life. Currently, there is no cure for xerostomia, only interventions for alleviating the discomfort associated with loss of salivary function. A novel therapy is underway to address this unmet need using hyaluronic acid (HA) hydrogels and primary cells from resected human salivary gland. Repeatable organization of salivary acini into functional secretory units is a key step toward the standardization of our model system. Our goal is to mimic the microenvironment of parotid salivary gland tissue in development to best support the organization of serous acini. Determining factors for organized acini are basement membrane (BM) deposition and lumen formation. Using live imaging light and fluorescence microscopy, we have observed the coordinated motility of acinar cells in HA hydrogels, prior to acini organization. In early stage organization, acinar cells are in a dynamic microenvironment continuously influenced by mechanical forces, and we hypothesize that mechanical forces drive the BM deposition, lumen formation, and structural integrity of the acini in 3D. In Aim 1, we intend to identify the signaling mechanisms involved in the net coordination of cell motility durin BM deposition and growth of the acini. Signaling mechanisms proposed in this coordination include integrin signaling at the cell-ECM interface, connexin mediated intra- and intercellular signaling, and nesprin4 nuclear repositioning. In Aim 2, we will measure the traction forces required to initiate the coordinated movement of a multicellular structure in 3D. Live-fluorescence imaging and computational modeling will be used to develop displacement field and cellular traction maps, and reconstruct cellular traction forces of organizing acini as a function of their size and microenvironment. In Aim 3, we will evaluate acini organization, lumen formation, and structural integrity in response to mechanical loading of the hydrogel. Effects of varying magnitude and frequency loads on acini organization and integrity will be evaluated. Successful completion of these specific aims will (1) standardize the model system used to engineer serous acini of the salivary parotid gland as well as the evaluation process for optimizing iterations of the HA hydrogel herein, (2) yield fundamental understanding of salivary acini structure/function relations, and (3) advance the translational potential of this tissue engineered system. Additionally, the PI, Dr. Danielle Wu, will gain experimental and computational training in 3D, crucial for her future as an independent researcher in tissue engineering, will acquire skills and perspective from operating at a multidisciplinary interface, and will advance her long-term career goals with training in manuscript and grant writing, mentorship, and collaboration skills.
描述(由申请人提供):头颈癌治疗需要切除腺体组织并结合放射治疗,会对目标组织和周围组织造成严重损害。唾液腺很脆弱,当受到损害时,功能丧失会导致唾液分泌不足和“口干”(口干症),从而导致口腔健康风险增加和生活质量下降。目前,口干症无法治愈,只能采取干预措施来减轻与唾液功能丧失相关的不适。目前正在开发一种新疗法,利用透明质酸 (HA) 水凝胶和来自切除的人类唾液腺的原代细胞来解决这一未满足的需求。将唾液腺泡重复组织成功能性分泌单位是我们模型系统标准化的关键一步。我们的目标是模拟发育中腮腺唾液腺组织的微环境,以最好地支持浆液性腺泡的组织。有组织腺泡的决定因素是基底膜 (BM) 沉积和管腔形成。使用实时成像光学和荧光显微镜,我们观察到HA水凝胶中腺泡细胞在腺泡组织之前的协调运动。在早期组织中,腺泡细胞处于动态微环境中,持续受到机械力的影响,我们假设机械力驱动 3D 腺泡的 BM 沉积、管腔形成和结构完整性。在目标 1 中,我们打算确定在 BM 沉积和腺泡生长过程中细胞运动净协调所涉及的信号传导机制。这种协调中提出的信号传导机制包括细胞-ECM 界面处的整合素信号传导、连接蛋白介导的细胞内和细胞间信号传导以及 nesprin4 核重新定位。在目标 2 中,我们将测量启动 3D 多细胞结构协调运动所需的牵引力。实时荧光成像和计算模型将用于开发位移场和细胞牵引力图,并重建组织腺泡的细胞牵引力作为其大小和微环境的函数。在目标 3 中,我们将评估水凝胶机械负载下的腺泡组织、管腔形成和结构完整性。将评估不同幅度和频率的负荷对腺泡组织和完整性的影响。成功完成这些具体目标将 (1) 标准化用于设计唾液腮腺浆液性腺泡的模型系统以及优化本文中 HA 水凝胶迭代的评估过程,(2) 产生对唾液腺泡结构的基本理解/功能关系,以及(3)提高该组织工程系统的转化潜力。此外,PI Danielle Wu 博士将获得 3D 方面的实验和计算培训,这对于她作为组织工程独立研究员的未来至关重要,她将从多学科界面的操作中获得技能和视角,并将推动她的长期发展。职业目标,包括手稿和资助写作、指导和协作技能方面的培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Danielle Wu其他文献
Danielle Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Danielle Wu', 18)}}的其他基金
Dynamic 3D interplay of primary human salivary cells and the basement membrane
人类原代唾液细胞和基底膜的动态 3D 相互作用
- 批准号:
8874752 - 财政年份:2014
- 资助金额:
$ 5.41万 - 项目类别:
Dynamic 3D interplay of primary human salivary cells and the basement membrane
人类原代唾液细胞和基底膜的动态 3D 相互作用
- 批准号:
9047268 - 财政年份:2014
- 资助金额:
$ 5.41万 - 项目类别:
相似海外基金
Determining Sox10-mediated plasticity in irradiated salivary gland cells
确定受辐射唾液腺细胞中 Sox10 介导的可塑性
- 批准号:
10606665 - 财政年份:2023
- 资助金额:
$ 5.41万 - 项目类别:
Regional and lobular heterogeneity of human pancreas morphology and function in type 1 diabetes pathogenesis
1型糖尿病发病机制中人胰腺形态和功能的区域和小叶异质性
- 批准号:
10400943 - 财政年份:2020
- 资助金额:
$ 5.41万 - 项目类别:
Regional and lobular heterogeneity of human pancreas morphology and function in type 1 diabetes pathogenesis
1型糖尿病发病机制中人胰腺形态和功能的区域和小叶异质性
- 批准号:
10617206 - 财政年份:2020
- 资助金额:
$ 5.41万 - 项目类别:
Regional and lobular heterogeneity of human pancreas morphology and function in type 1 diabetes pathogenesis
1型糖尿病发病机制中人胰腺形态和功能的区域和小叶异质性
- 批准号:
10223289 - 财政年份:2020
- 资助金额:
$ 5.41万 - 项目类别: