Decoding the electric face: development and channelopathy-induced birth defects
解码电脸:发育和通道病引起的出生缺陷
基本信息
- 批准号:8736077
- 负责人:
- 金额:$ 32.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAgeAmphibiaAnatomyAngelman SyndromeAreaArrhythmiaAtlasesBiomedical EngineeringBiophysicsBirthCell membraneCellsComplementComplexComputer SimulationCongenital AbnormalityCoupledDataData SetDefectDevelopmentDyesEatingEmbryoEpigenetic ProcessEtiologyEventEyeEye DevelopmentFaceFeedbackFluorescent DyesFoundationsFutureGap JunctionsGene ExpressionGene Expression ProfileGenesGeneticGenetic ProcessesGrowthHeadHumanHybridsIn SituIndividualIon ChannelIon PumpsIonsKnowledgeLifeLightLinkLocationMediatingMembraneMembrane PotentialsMethodsMiningModelingMolecularMolecular GeneticsMorphogenesisMorphologyMutationNatural regenerationNeurologicOrganPathway interactionsPatientsPatternPhysiologicalPrimordiumProcessPropertyRanaReadingReagentRegenerative MedicineRegulationRelative (related person)ReporterRestRewardsRoleShapesSignal TransductionSourceStructureStudy modelsSyndromeTechniquesTestingTimeTissuesWorkWritingXenopusbasebioelectricitybiophysical propertiescell behaviorchemical geneticscraniofacialdisease-causing mutationelectric fieldin vivolimb regenerationloss of functionmathematical modelminimally invasivenovelnovel strategiesoptogeneticspreventpublic health relevanceregional differencerelating to nervous systemrepairedself assemblyself organizationtooltumorigenesisvoltage
项目摘要
DESCRIPTION (provided by applicant): Craniofacial development in tractable models such as the frog Xenopus, has been a popular and highly rewarding model for studies of the cell activities that build complex structures. Much information has been gathered about the chemical and genetic processes that underlie craniofacial patterning. In contrast to and complementing that work, our lab has discovered a layer of biophysical signaling: a regulated distribution of different cell membrane resting potentials that instruct cell behavior and large-scale morphogenesis. We have showed that eye development, limb regeneration, and tumorigenesis are all regulated by ion channel-mediated voltage gradients. We have adapted voltage-sensitive fluorescent dyes to observe these gradients and used molecular tools to modify them thereby regulating individual cell behaviors and reprogramming whole organ primordia. These techniques are distinct from classical methods of electric field application, and reveal not only the molecular-genetic sources of the gradients but also the epigenetic and transcriptional downstream steps through which biophysical properties regulate morphology. Recently, we uncovered a remarkable feature of early craniofacial development: the "electric face" - dynamic patterns of hyper- and depolarization in the embryonic frog face that precede, predict, and control the shape and location of facial structures. Perturbing these patterns, results in predictable changes in expression of key genes and changes in anatomy. This finding suggests a hypothesis for the heretofore-mysterious observation that several channelopathies (diseases caused by mutations in ion channel genes such as KCNJ2) cause not only neurological deficits and cardiac arrhythmias but also craniofacial defects. The fact that these channels participate in the establishment of the normal bioelectric regionalization of the embryonic face may explain why channels are essential for craniofacial patterning. Our project aims to: 1) characterize in detail the bioelectric properties of the early face relative to gene expression domains (a physiomics atlas merging transcriptional and biophysical data); 2) explore the emergence of the bioelectric face patterns by formulating a predictive mathematical model of self-organization within electrically-coupled cells; 3) reveal molecular details of how voltage gradients regulate specific downstream face-patterning gene expression domains; and 4) develop optogenetic techniques to read/write desired electrical patterns in living tissue to override incorrect membrane voltage patterns thus preventing defects. The resulting data will: serve as an essential foundation for future attempts to merge biophysical and transcriptional regulatory layers in order to explain complex development; establish a quantitative model to prescribe minimally invasive corrective manipulations of voltage-dependent patterning; and to chart a new approach toward exploiting guided self-assembly of bioelectrical patterns to address issues in regenerative medicine, etiology and treatment of birth defects, as well as produce new hybrid constructs via synthetic bioengineering.
描述(由申请人提供):易处理模型(例如青蛙非洲爪蟾)的颅面发育一直是研究构建复杂结构的细胞活动的流行且高回报的模型。关于颅面图案背后的化学和遗传过程,我们已经收集了很多信息。与这项工作相反并补充的是,我们的实验室发现了一层生物物理信号:不同细胞膜静息电位的受调节分布,指导细胞行为和大规模形态发生。我们已经表明,眼睛发育、肢体再生和肿瘤发生都受到离子通道介导的电压梯度的调节。我们采用了电压敏感荧光染料来观察这些梯度,并使用分子工具来修改它们,从而调节个体细胞行为并重新编程整个器官原基。这些技术不同于电场应用的经典方法,不仅揭示了梯度的分子遗传来源,还揭示了生物物理特性调节形态的表观遗传和转录下游步骤。最近,我们发现了早期颅面发育的一个显着特征:“电面”——胚胎青蛙面部超极化和去极化的动态模式,它先于、预测和控制面部结构的形状和位置。扰乱这些模式会导致关键基因表达的可预测变化和解剖结构的变化。这一发现为迄今为止神秘的观察结果提出了一个假设,即几种离子通道病(由离子通道基因突变引起的疾病,如 KCNJ2)不仅会导致神经功能缺损和心律失常,还会导致颅面缺陷。这些通道参与胚胎面部正常生物电区域化的建立这一事实可以解释为什么通道对于颅面图案化至关重要。我们的项目旨在:1)详细描述早期面部相对于基因表达域的生物电特性(合并转录和生物物理数据的生理组学图谱); 2)通过制定电耦合细胞内自组织的预测数学模型来探索生物电面部模式的出现; 3)揭示电压梯度如何调节特定下游面部图案基因表达域的分子细节; 4) 开发光遗传学技术来读取/写入活体组织中所需的电模式,以覆盖不正确的膜电压模式,从而防止缺陷。由此产生的数据将: 作为未来尝试合并生物物理和转录调控层以解释复杂发育的重要基础;建立定量模型来规定电压依赖性图案的微创校正操作;并制定一种新方法,利用生物电模式的引导自组装来解决再生医学、病因学和先天缺陷治疗方面的问题,以及通过合成生物工程生产新的混合结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANY SPENCER ADAMS其他文献
DANY SPENCER ADAMS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANY SPENCER ADAMS', 18)}}的其他基金
Decoding the electric face: development and channelopathy-induced birth defects
解码电脸:发育和通道病引起的出生缺陷
- 批准号:
9284499 - 财政年份:2014
- 资助金额:
$ 32.18万 - 项目类别:
Ductin's Role in Craniofacial Patterning and Development
Ductin 在颅面图案形成和发育中的作用
- 批准号:
7033421 - 财政年份:2005
- 资助金额:
$ 32.18万 - 项目类别:
Ductin's Role in Craniofacial Patterning and Development
Ductin 在颅面图案形成和发育中的作用
- 批准号:
7120574 - 财政年份:2005
- 资助金额:
$ 32.18万 - 项目类别:
Ductin's Role in Craniofacial Patterning and Development
Ductin 在颅面图案形成和发育中的作用
- 批准号:
7468411 - 财政年份:2005
- 资助金额:
$ 32.18万 - 项目类别:
Ductin's Role in Craniofacial Patterning and Development
Ductin 在颅面图案形成和发育中的作用
- 批准号:
7786728 - 财政年份:2005
- 资助金额:
$ 32.18万 - 项目类别:
Ductin's Role in Craniofacial Patterning and Development
Ductin 在颅面图案形成和发育中的作用
- 批准号:
7660287 - 财政年份:2005
- 资助金额:
$ 32.18万 - 项目类别:
Ductin's Role in Craniofacial Patterning and Development
Ductin 在颅面图案形成和发育中的作用
- 批准号:
7264604 - 财政年份:2005
- 资助金额:
$ 32.18万 - 项目类别:
相似国自然基金
基于年龄和空间的非随机混合对性传播感染影响的建模与研究
- 批准号:12301629
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
母传抗体水平和疫苗初种年龄对儿童麻疹特异性抗体动态变化的影响
- 批准号:82304205
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
年龄结构和空间分布对艾滋病的影响:建模、分析与控制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机噪声影响下具有年龄结构的布鲁氏菌病动力学行为与最优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Executive functions in urban Hispanic/Latino youth: exposure to mixture of arsenic and pesticides during childhood
城市西班牙裔/拉丁裔青年的执行功能:童年时期接触砷和农药的混合物
- 批准号:
10751106 - 财政年份:2024
- 资助金额:
$ 32.18万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 32.18万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别:
Identifying and Addressing the Effects of Social Media Use on Young Adults' E-Cigarette Use: A Solutions-Oriented Approach
识别和解决社交媒体使用对年轻人电子烟使用的影响:面向解决方案的方法
- 批准号:
10525098 - 财政年份:2023
- 资助金额:
$ 32.18万 - 项目类别: