Microengineered Osteons for Bone Tissue Engineering
用于骨组织工程的微工程骨
基本信息
- 批准号:8762300
- 负责人:
- 金额:$ 60.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:3D PrintAchievementAddressAnastomosis - actionBiocompatible MaterialsBlood capillariesBone TissueBone TransplantationCellsClinicalClinical TreatmentCoculture TechniquesDefectEffectivenessElastinEngineeringEnvironmentFeasibility StudiesFigs - dietaryGelGrowth FactorHealedHumanHydrogelsIn VitroLinkMesenchymal Stem CellsMethodsModelingNecrosisOrthopedicsOsteogenesisOsteonPerfusionRattusRegenerative MedicineStem cellsSurgical suturesTestingTissue EngineeringTissuesTranslatingTranslationsTransplantationVascular GraftVascular blood supplyVascularizationWorkangiogenesisbasebonecapillaryclinical practicehealingimprovedin vivoinnovationmineralizationnovelpreventpublic health relevancerepairedscaffoldsuccesstissue support frame
项目摘要
DESCRIPTION (provided by applicant): Vascularization remains the principle obstacle that impedes the translation of most bone tissue engineered constructs to clinical practice. Pre-vascularization of large constructs has great potential to improve functional vasculature throughout the scaffold to rapidly facilitate integration with the surrounding tissue and circumvent necrosis in the core of the scaffold. In our previous studies, we have developed microengineered gels to co- culture human endothelial progenitor cells (hEPCs) and human mesenchymal stem cells (hMSCs) to engineer microvasculature, but observed limited anastomotic potential. We have also developed a number of approaches in which engineered hydrogels can be assembled into graded tissue scaffolds to generate vascularized constructs, and determined the need to protect structural integrity of microvasculature using mechanically-robust scaffolds. A major remaining challenge in our work is that despite the initial remodeling of
the cells into functioning microvessels, efficient integration to major vessels has not been observed. The main premise of this renewal proposal is that by incorporating a perfusable vessel graft that connects the microvasculature of the engineered construct to large host vessels, we will be able to address this challenging issue. In this renewal project, we propose to engineer a bone scaffold that integrates microvasculature with a surgically-anastomizable large vessel graft to heal critical size segmental bone defects. This construct will be developed in vitr such that the microvascular capillaries in gels connect with the large vessel graft and subsequently to the host vessel in vivo. Our hypothesis is this construct can substantially improve on the integration to the host tissue by restoring blood supply immediately after transplantation. To test our hypothesis, our team comprised of experts in tissue engineering, biomaterials, microengineering, and orthopedics proposes the following aims: Aim 1. Develop components for fabrication of surgically-anastomizable pre- vascularized bone construct. Aim 2. Engineer and characterize surgically-anastomizable pre-vascularized bone construct in vitro. Aim 3. Evaluate the efficiency of surgically-anastomizable pre-vascularized bone construct in repair of critical size segmental bone defects. The completion of this work will be a paradigm shift and a landmark achievement in efforts to clinical treatments for bone critical size defects.
描述(由申请人提供):血管化仍然是阻碍大多数骨组织工程构建体转化为临床实践的主要障碍。大型结构的预血管化具有改善整个支架的功能性血管系统的巨大潜力,可快速促进与周围组织的整合并避免支架核心的坏死。在我们之前的研究中,我们开发了微工程凝胶来共培养人内皮祖细胞(hEPC)和人间充质干细胞(hMSC)来改造微血管,但观察到吻合潜力有限。我们还开发了多种方法,将工程水凝胶组装成分级组织支架以生成血管化构建体,并确定需要使用机械坚固的支架来保护微脉管系统的结构完整性。我们工作中剩下的一个主要挑战是,尽管进行了初步改造
细胞进入功能性微血管,但尚未观察到与主要血管的有效整合。这一更新提案的主要前提是,通过合并可灌注血管移植物,将工程结构的微脉管系统连接到大型宿主血管,我们将能够解决这一具有挑战性的问题。在这个更新项目中,我们建议设计一种骨支架,将微脉管系统与可手术吻合的大血管移植物集成在一起,以治愈临界尺寸的节段性骨缺损。该构建体将在体外开发,使得凝胶中的微血管毛细血管与大血管移植物连接,随后在体内与宿主血管连接。我们的假设是,这种构建体可以通过在移植后立即恢复血液供应来显着改善与宿主组织的整合。为了检验我们的假设,我们的团队由组织工程、生物材料、微工程和骨科专家组成,提出了以下目标: 目标 1. 开发用于制造可手术吻合的预血管化骨结构的组件。目标 2. 在体外设计并表征可手术吻合的预血管化骨结构。目标 3. 评估可手术吻合的预血管化骨结构修复临界尺寸节段性骨缺损的效率。这项工作的完成将是骨临界尺寸缺陷临床治疗工作的范式转变和里程碑式的成就。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
YUNZHI YANG其他文献
YUNZHI YANG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('YUNZHI YANG', 18)}}的其他基金
Vascularization in bone tissue engineering constructs
骨组织工程结构中的血管化
- 批准号:
10552011 - 财政年份:2019
- 资助金额:
$ 60.25万 - 项目类别:
Vascularization in bone tissue engineering constructs
骨组织工程结构中的血管化
- 批准号:
10335162 - 财政年份:2019
- 资助金额:
$ 60.25万 - 项目类别:
Vascularization in bone tissue engineering constructs
骨组织工程结构中的血管化
- 批准号:
10088414 - 财政年份:2019
- 资助金额:
$ 60.25万 - 项目类别:
Engineering Vascularized Bone Tissues By Microfabrication And Scaffolding
通过微加工和脚手架工程血管化骨组织
- 批准号:
8434749 - 财政年份:2011
- 资助金额:
$ 60.25万 - 项目类别:
Engineering Vascularized Bone Tissues By Microfabrication And Scaffolding
通过微加工和脚手架工程血管化骨组织
- 批准号:
8635210 - 财政年份:2011
- 资助金额:
$ 60.25万 - 项目类别:
相似国自然基金
共和盆地东北部地区隆升剥蚀过程对干热岩形成就位的影响:来自低温热年代学的制约
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
朱鹮野生种群营养生态位对繁殖成就的影响及保护对策研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
成就目标视角下建言韧性的形成机制与作用效果研究
- 批准号:72102228
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于目标成就评量的社区中医药健康管理服务评价及优化策略研究
- 批准号:71874047
- 批准年份:2018
- 资助金额:49.0 万元
- 项目类别:面上项目
科研人员流动与职业成就的关系研究
- 批准号:71874049
- 批准年份:2018
- 资助金额:48.0 万元
- 项目类别:面上项目
相似海外基金
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
- 批准号:
10232836 - 财政年份:2022
- 资助金额:
$ 60.25万 - 项目类别:
Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties
开发适合量化肌肉束结构和机械性能的超声成像模型
- 批准号:
10252224 - 财政年份:2021
- 资助金额:
$ 60.25万 - 项目类别:
A Virtual Project-Based Learning Sandbox for Mimetics and Medically Inspired Classroom Engineering (MiMICRE)
用于模仿和医学启发课堂工程的基于虚拟项目的学习沙盒 (MiMICRE)
- 批准号:
10696661 - 财政年份:2021
- 资助金额:
$ 60.25万 - 项目类别:
Development of Ultrasound Imaging Phantoms Appropriate for Quantification of Muscle Fascicle Architecture and Mechanical Properties
开发适合量化肌肉束结构和机械性能的超声成像模型
- 批准号:
10427254 - 财政年份:2021
- 资助金额:
$ 60.25万 - 项目类别:
A Virtual Project-Based Learning Sandbox for Mimetics and Medically Inspired Classroom Engineering (MiMICRE)
用于模仿和医学启发课堂工程的基于虚拟项目的学习沙盒 (MiMICRE)
- 批准号:
10254459 - 财政年份:2021
- 资助金额:
$ 60.25万 - 项目类别: