High Strength Bioresorbable PLA/CaP Composites
高强度生物可吸收 PLA/CaP 复合材料
基本信息
- 批准号:8627479
- 负责人:
- 金额:$ 25.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAdverse effectsAffectAreaBindingBiologicalBone GrowthCellsChelating AgentsClinicalCouplingDevicesDiagnosticFillerFractureGoalsHybridsHydroxyapatitesImplantIn VitroInflammatoryInterphaseLeadLocationMagnetic Resonance ImagingMechanicsMolecular WeightOperative Surgical ProceduresOutcomeParticle SizePatientsPhasePropertyResearchRiskStressStructureStudy SectionSurfaceTechnologyTensile StrengthTreatment CostVascularizationWeight-Bearing stateX-Ray Computed Tomographybasebiodegradable polymerbiomaterial compatibilitybonebone healingcalcium phosphatechemical bondclinical applicationimprovedin vitro Modelinnovationinstrumentinterfacialnew technologynovelphosphonatepoly(lactide)polymerizationrepairedresponsesample fixationsuccesstetracalcium phosphatetricalcium phosphate
项目摘要
DESCRIPTION (provided by applicant): Bioresorbable composites made from degradable polymers and bioactive calcium phosphates are clinically desirable for bone fixation and repair, because they do not have to be removed by second surgery after bone heals. However, a critical barrier to wider and more successful use of current bioresorbable polylactide/calcium phosphate (PLA/CaP) composites to bone fixation is their weak mechanical properties. The goal of this project is to develop a new technology to improve the mechanical strength of PLA/CaP composites to match that of natural bone, so that they can have wider application in load-bearing locations. Due to the critical importance of the interfacial adhesion between the PLA matrix and CaP filler within the composites, the strategy is to develop a technology that effectively combines a core-shell organic-inorganic hybrid structure with a special phosphonic chelating agent and surface initiated polymerization to establish direct chemical bonds between the PLA matrix and CaP filler. Based on the improved interface, we target to improve the mechanical strengths of the bioresorbable composites to the average value of natural bone (e.g. 100 MPa as the target value of the tensile strength). Moreover, by additional optimizing a number of critical variables (e.g. CaP phase, particle size, PLA molecular weight (MW) and CaP/PLA mass ratio), we seek to adjust the mechanical strength of PLA/CaP composites into a wide range (e.g. tensile strength 50 - 100 MPa), so that they can best match those of natural bones from varied locations. Both of the initial mechanical strength and the degradation dependent mechanical strength as well as biological interaction of the composites will be studied in the proposed research. Success of the proposed research will produce bioresorbable composites with improved biocompatibility and high and adjustable mechanical strength which can well match new bone growth. This will allow such bioresorbable materials to be more widely and successfully applied to bone fixation and repair, particularly for the load-bearing areas, by maintaining sufficient strength during bone healing, eliminating stress-shielding, and avoiding the clinical adverse inflammatory effects. Clinically, using such bioresorbable materials instead of current non-resorbable metallic devices would be of great benefit to patients, by avoiding the interference with diagnostic instruments (e.g. computed tomography (CT)), eliminating the possible second surgery to remove the device after bone heals, and reducing the total treatment cost.
描述(由申请人提供):由可降解聚合物和生物活性磷酸钙制成的生物可吸收复合材料在临床上适合用于骨固定和修复,因为它们不必在骨愈合后通过第二次手术去除。然而,当前生物可吸收聚丙交酯/磷酸钙(PLA/CaP)复合材料在骨固定中更广泛、更成功使用的一个关键障碍是其较弱的机械性能。该项目的目标是开发一种新技术,提高PLA/CaP复合材料的机械强度,使其与天然骨相匹配,从而使其在承重部位有更广泛的应用。由于复合材料中 PLA 基体和 CaP 填料之间的界面粘合至关重要,因此该策略是开发一种技术,将核壳有机-无机杂化结构与特殊的膦酸螯合剂和表面引发聚合有效结合起来,以在 PLA 基质和 CaP 填料之间建立直接化学键。基于改进的界面,我们的目标是将生物可吸收复合材料的机械强度提高到天然骨的平均值(例如100 MPa作为拉伸强度的目标值)。此外,通过额外优化一些关键变量(例如CaP相、粒径、PLA分子量(MW)和CaP/PLA质量比),我们寻求将PLA/CaP复合材料的机械强度调整到较宽的范围(例如抗拉强度为 50 - 100 MPa),以便它们能够最好地匹配不同位置的天然骨骼。在拟议的研究中,将研究复合材料的初始机械强度和降解相关机械强度以及生物相互作用。该研究的成功将生产出具有改善的生物相容性和高且可调节的机械强度的生物可吸收复合材料,可以很好地匹配新骨的生长。这将使此类生物可吸收材料能够更广泛、更成功地应用于骨固定和修复,特别是承载区域,在骨愈合过程中保持足够的强度,消除应力屏蔽,并避免临床不良炎症效应。在临床上,使用这种生物可吸收材料代替目前的不可吸收金属装置将对患者大有裨益,因为它可以避免对诊断仪器(例如计算机断层扫描(CT))的干扰,消除骨愈合后可能进行的第二次手术以移除装置,并降低总治疗成本。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Synthesis of carboxylic block copolymers via reversible addition fragmentation transfer polymerization for tooth erosion prevention.
通过可逆加成断裂转移聚合合成羧基嵌段共聚物,用于预防牙齿侵蚀。
- DOI:10.1177/0022034514551609
- 发表时间:2014
- 期刊:
- 影响因子:7.6
- 作者:Lei,Y;Wang,T;Mitchell,JW;Qiu,J;Kilpatrick-Liverman,L
- 通讯作者:Kilpatrick-Liverman,L
A Polycarbonate/Magnesium Oxide Nanocomposite with High Flame Retardancy.
- DOI:10.1002/app.34574
- 发表时间:2012-01-15
- 期刊:
- 影响因子:3
- 作者:Dong, Quanxiao;Gao, Chong;Ding, Yanfen;Wang, Feng;Wen, Bin;Zhang, Shimin;Wang, Tongxin;Yang, Mingshu
- 通讯作者:Yang, Mingshu
Immobilization of Xanthate Agent on Titanium Dioxide and Surface Initiated RAFT Polymerization.
二氧化钛上黄原剂的固定化和表面引发的 RAFT 聚合。
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Lei,Yanda;Wang,Tongxin;Mitchell,JamesW;Chow,LaurenceC
- 通讯作者:Chow,LaurenceC
Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition.
- DOI:10.1016/j.matdes.2016.07.072
- 发表时间:2016-11-05
- 期刊:
- 影响因子:8.4
- 作者:Hui X;Qian L;Harris G;Wang T;Che J
- 通讯作者:Che J
Bioinspired amphiphilic phosphate block copolymers as non-fluoride materials to prevent dental erosion.
- DOI:10.1039/c4ra08377f
- 发表时间:2014-01-01
- 期刊:
- 影响因子:3.9
- 作者:Lei Y;Wang T;Mitchell JW;Zaidel L;Qiu J;Kilpatrick-Liverman L
- 通讯作者:Kilpatrick-Liverman L
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tongxin Wang其他文献
Tongxin Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tongxin Wang', 18)}}的其他基金
High Strength Bioresorbable PLA/CaP Composites
高强度生物可吸收 PLA/CaP 复合材料
- 批准号:
8236749 - 财政年份:2012
- 资助金额:
$ 25.77万 - 项目类别:
High Strength Bioresorbable PLA/CaP Composites
高强度生物可吸收 PLA/CaP 复合材料
- 批准号:
8449662 - 财政年份:2012
- 资助金额:
$ 25.77万 - 项目类别:
Surface Initiated Polymerization for Bioresorbable PLA/CaP Composites with Improv
Improv 生物可吸收 PLA/CaP 复合材料的表面引发聚合
- 批准号:
8112194 - 财政年份:2010
- 资助金额:
$ 25.77万 - 项目类别:
相似国自然基金
基因与家庭不利环境影响儿童反社会行为的表观遗传机制:一项追踪研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
不利地质结构对地下洞室群围岩地震响应影响研究
- 批准号:51009131
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
列车制动力对铁路桥梁的作用机理及最不利影响的研究
- 批准号:50178004
- 批准年份:2001
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
- 批准号:
10638221 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别:
Study of the Safety, Tolerability, and Efficacy of an iPS Cell-based Therapy for Recessive Dystrophic Epidermolysis Bullosa Delivered with a Spray on Skin Device
使用皮肤喷雾装置治疗隐性营养不良性大疱性表皮松解症的 iPS 细胞疗法的安全性、耐受性和有效性研究
- 批准号:
10721324 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别:
Vitiligo topical treatment applying a potent, highly selective MC1R agonist
使用强效、高选择性 MC1R 激动剂进行白癜风局部治疗
- 批准号:
10759768 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别:
Cannabis and Pathogenic Mechanisms influencing Blood Brain Barrier Function in HIV
大麻和影响艾滋病毒血脑屏障功能的致病机制
- 批准号:
10683027 - 财政年份:2023
- 资助金额:
$ 25.77万 - 项目类别: