How does misregulation of PI3,5P2 signaling lead to neurodegeneration?
PI3、5P2 信号传导失调如何导致神经退行性变?
基本信息
- 批准号:8197473
- 负责人:
- 金额:$ 33.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-01-01 至 2013-11-30
- 项目状态:已结题
- 来源:
- 关键词:AchievementAddressAffectAlzheimer&aposs DiseaseAxonal TransportBindingBinding ProteinsBrainCandidate Disease GeneCell SurvivalCellsCharcot-Marie-Tooth DiseaseComplexCultured CellsDefectDendritic SpinesDiseaseEmbryoEndosomesEnzymesEukaryotaFamily memberFibroblastsFunctional disorderGenesGoalsGrowthIntronsKnock-outLaboratoriesLeadLipidsMammalsMass Spectrum AnalysisMeasurementMeasuresMembrane Protein TrafficMetabolismMethodsMissense MutationMusNerve DegenerationNerve Growth FactorsNervous system structureNeurodegenerative DisordersNeurologicNeuronsOrganellesOrganismParkinson DiseasePathway interactionsPatientsPeripheral Nervous SystemPhosphatidylinositolsPhosphoric Monoester HydrolasesPhosphotransferasesPoint MutationProcessProtein FamilyProteinsResearchRoleSignal TransductionSyndromeTestingTissuesTransgenic MiceVacuoleYeastsbaseembryonic stem cellinorganic phosphateinsightknock-downlate endosomemembermutantnovel strategiesoverexpressionpostsynapticpresynapticprotein complexprotein functionresearch studysmall hairpin RNAtooltrafficking
项目摘要
PROJECT SUMMARY/ABSTRACT
The low abundance signaling lipid, phosphatidylinositol (3,5)-bis phosphate (PI3,5P2) is present in all
eukaryotes, and is postulated to be involved in multiple trafficking pathways from late endosomes. The
machinery that synthesizes this lipid includes the PI3P 5'-kinase Fab1/PIKfyve and a regulatory complex
composed of Vac14 and Fig4. In mammals, these proteins are expressed in all tissues. We recently
discovered that mice that lack either Vac14 or Fig4 have reduced PI3,5P2 levels in their cells and die
prematurely. Unexpectedly, the main defect is massive neurodegeneration. Affected neurons in both the brain
and the peripheral nervous system develop large vacuoles that arise from endosomes. Consistent with the
importance of PI3,5P2 in the nervous system, we identified patients with Charcot-Marie Tooth syndrome
(CMT4J) whose disease corresponds to a single point mutation in Fig4. Little is known about PI3,5P2 and
virtually nothing is known about its role in the nervous system. The overall goals of this proposal are to
determine the mechanisms that regulate PI3,5P2 levels in neurons and to conduct studies to determine why
loss of PI3,5P2 causes neurological defects. Our three specific aims are: 1) Determine whether any or all
WIPI family proteins regulate Fab1/PIKfyve activity. Based on homology with yeast Atg18, we predict that
one or more WIPI family members negatively regulate Fab1/PIKfyve. We will directly test this hypothesis and
will also screen for additional negative and positive regulators of Fab1/PIKfyve. 2) Determine whether PI3,5P2
in neurons solely regulates general membrane trafficking, or whether it also regulates neuronal-
specific membrane trafficking pathways. Why are neurons particularly affected by loss of PI3,5P2? To
address this, the following questions will be tested. Are neurons, by virtue of their long processes especially
vulnerable to defects in membrane trafficking pathways regulated by PI3,5P2? Are there neuronal-specific
organelles either in presynaptic and/or postsynaptic termini that require PI3,5P2? We will measure the effects
of loss of PI3,5P2 on pathways specific to neurons, as well as general pathways. We will also develop
methods to elevate PI3,5P2 levels in cultured cells. Based on a dominant active yeast Fab1 mutant that
produces 17-fold higher levels of PI3,5P2, we will test candidate mammalian Fab1/PIKfyve mutants that we
predict will be dominant active. 3) Determine whether PI3,5P2 can be generated in the absence of
Fab1/PIKfyve. In yeast, all PI3,5P2 is generated through Fab1. However, phosphoinositide metabolism in
mammals is more complex. We will test whether PI3,5P2 in mice can be generated in the absence of
Fab1/PIKfyve. Achievement of these aims will provide insights into the pathophysiology of neurodegenerative
disorders and may ultimately lead to novel approaches for treatments for a variety of neurodegenerative
diseases. PROJECT NARRATIVE
Common neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases, are complex conditions
that arise from defects in a variety of pathways. Our laboratory has discovered a new pathway that when
disrupted unexpectedly causes neurodegeneration. The overall goal of this application is to determine how
defects in this pathway lead to neurodegeneration.
项目概要/摘要
低丰度信号脂质磷脂酰肌醇 (3,5)-二磷酸 (PI3,5P2) 存在于所有细胞中
真核生物,并且被认为参与晚期内体的多种运输途径。这
合成这种脂质的机制包括 PI3P 5'-激酶 Fab1/PIKfyve 和调节复合物
由Vac14和Fig4组成。在哺乳动物中,这些蛋白质在所有组织中表达。我们最近
发现缺乏 Vac14 或 Fig4 的小鼠细胞中 PI3、5P2 水平降低并死亡
过早地。出乎意料的是,主要缺陷是大规模的神经变性。两个大脑中的神经元都受到影响
周围神经系统发育出由内体产生的大液泡。符合
PI3、5P2 在神经系统中的重要性,我们确定了夏科-玛丽图斯综合征患者
(CMT4J),其疾病对应于图4中的单点突变。关于 PI3、5P2 和
事实上,人们对它在神经系统中的作用一无所知。该提案的总体目标是
确定神经元中调节 PI3、5P2 水平的机制并进行研究以确定其原因
PI3、5P2 的缺失会导致神经系统缺陷。我们的三个具体目标是: 1) 确定是否有任何或全部
WIPI 家族蛋白调节 Fab1/PIKfyve 活性。基于与酵母 Atg18 的同源性,我们预测
一个或多个 WIPI 家族成员对 Fab1/PIKfyve 进行负调控。我们将直接检验这个假设
还将筛选 Fab1/PIKfyve 的其他负调节因子和正调节因子。 2)判断是否PI3,5P2
在神经元中仅调节一般膜运输,或者它是否也调节神经元
特定的膜运输途径。为什么神经元特别容易受到 PI3、5P2 缺失的影响?到
为了解决这个问题,将测试以下问题。神经元,由于它们的长过程,特别是
容易受到 PI3、5P2 调节的膜运输途径缺陷的影响吗?是否存在神经元特异性
突触前和/或突触后末端的细胞器需要 PI3,5P2?我们将衡量效果
神经元特异性通路以及一般通路上 PI3、5P2 的丢失。我们还将开发
提高培养细胞中 PI3、5P2 水平的方法。基于显性活性酵母 Fab1 突变体
产生 17 倍高水平的 PI3,5P2,我们将测试候选哺乳动物 Fab1/PIKfyve 突变体
预测将主导主动。 3)判断在没有的情况下能否生成PI3,5P2
Fab1/PIKfyve。在酵母中,所有PI3、5P2都是通过Fab1产生的。然而,磷酸肌醇代谢
哺乳动物则更为复杂。我们将测试小鼠体内PI3,5P2是否可以在缺乏的情况下产生
Fab1/PIKfyve。这些目标的实现将为神经退行性疾病的病理生理学提供深入的见解
疾病,并可能最终导致治疗各种神经退行性疾病的新方法
疾病。项目叙述
常见的神经退行性疾病,例如阿尔茨海默病和帕金森病,是复杂的病症
由多种途径的缺陷引起的。我们的实验室发现了一条新途径
意外破坏会导致神经退行性变。该应用程序的总体目标是确定如何
该通路的缺陷会导致神经退行性变。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lois S Weisman其他文献
Lois S Weisman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lois S Weisman', 18)}}的其他基金
Phosphoinositide signaling: novel potential targets for Huntington disease
磷酸肌醇信号传导:亨廷顿病的新潜在靶点
- 批准号:
10183342 - 财政年份:2017
- 资助金额:
$ 33.12万 - 项目类别:
2016 Lysosome and Endocytosis Gordon Research Conference & Gordon Research Seminar
2016年溶酶体与内吞作用戈登研究会议
- 批准号:
9123850 - 财政年份:2016
- 资助金额:
$ 33.12万 - 项目类别:
Inositol lipid regulation of membrane fusion and fission
肌醇脂质对膜融合和裂变的调节
- 批准号:
7810115 - 财政年份:2010
- 资助金额:
$ 33.12万 - 项目类别:
REGULATION OF THE SIGNALING PHOSPHOLIPID, PHOSPHATIDYLINOSITOL 3,5 BIS PHOSPHATE
信号磷脂、磷脂酰肌醇 3,5 二磷酸酯的调节
- 批准号:
8171245 - 财政年份:2010
- 资助金额:
$ 33.12万 - 项目类别:
How does misregulation of PI3,5P2 signaling lead to neurodegeneration?
PI3、5P2 信号传导失调如何导致神经退行性变?
- 批准号:
7994750 - 财政年份:2009
- 资助金额:
$ 33.12万 - 项目类别:
How does misregulation of PI3,5P2 signaling lead to neurodegeneration?
PI3、5P2 信号传导失调如何导致神经退行性变?
- 批准号:
8383105 - 财政年份:2009
- 资助金额:
$ 33.12万 - 项目类别:
Roles and regulation of PI(3,5)P2 and PI5P in neurons
PI(3,5)P2和PI5P在神经元中的作用和调节
- 批准号:
9052226 - 财政年份:2009
- 资助金额:
$ 33.12万 - 项目类别:
Roles and regulation of PI(3,5)P2 and PI5P in neurons
PI(3,5)P2和PI5P在神经元中的作用和调节
- 批准号:
8853956 - 财政年份:2009
- 资助金额:
$ 33.12万 - 项目类别:
Roles and regulation of PI(3,5)P2 and PI5P in neurons
PI(3,5)P2和PI5P在神经元中的作用和调节
- 批准号:
8768515 - 财政年份:2009
- 资助金额:
$ 33.12万 - 项目类别:
How does misregulation of PI3,5P2 signaling lead to neurodegeneration?
PI3、5P2 信号传导失调如何导致神经退行性变?
- 批准号:
7564524 - 财政年份:2009
- 资助金额:
$ 33.12万 - 项目类别:
相似国自然基金
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
The University of Miami AIDS Research Center on Mental Health and HIV/AIDS - Center for HIV & Research in Mental Health (CHARM)
迈阿密大学艾滋病心理健康和艾滋病毒/艾滋病研究中心 - Center for HIV
- 批准号:
10686541 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
Neurosurgeon Research Career Development Program (NRCDP)
神经外科医生研究职业发展计划 (NRCDP)
- 批准号:
10787021 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
Undernutrition, microbiota maturation, and adaptive immunity in Bangladeshi children
孟加拉国儿童的营养不良、微生物群成熟和适应性免疫
- 批准号:
10718949 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
Non-APOL1 genetic factors and kidney transplant outcomes
非 APOL1 遗传因素与肾移植结果
- 批准号:
10717171 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别:
Earlier-Life Predictors of Midlife Risk Factors for Dementia: A 35-Year Follow-up
中年痴呆症风险因素的早期预测因素:35 年随访
- 批准号:
10596295 - 财政年份:2023
- 资助金额:
$ 33.12万 - 项目类别: