Upgrading the OMX microscope for extended live imaging and fast live 3-D structur

升级 OMX 显微镜以实现扩展实时成像和快速实时 3D 结构

基本信息

项目摘要

DESCRIPTION (provided by applicant): Fluorescence microscopy has the unique capacity to probe both static and live processes with great specificity to link the dynamics and/or localization of molecular and cellular components with their function. Recently, a new microscope platform, OMX, was designed to acquire sub-second four-dimensional (4D) multi-color in vivo data with a dual functionality to attain sub-diffraction structured illumination (SI) imaging of fixed samples. Over the last two years, this first generation OMX microscope at UCSF has been converted from a dedicated development microscope to a production microscope open to projects from within UCSF and from the outside academic community. As a result of more general use, users identified several major desired improvements which, if they could be made to the OMX microscope, would vastly expand their ability to attain their research goals. The first update is to increase the time over which biological processes can be observed in their unperturbed natural state. Phototoxicity is a major limitation in live microscopy, inducin morphological changes, delays in cell progression and cell death. Introduction of pulsed lasers to reduce the excitation light to microsecond exposures rather than the current millisecond limits will permit far lower photon doses to be achieved, allowing cells to be imaged for much longer periods of time. The second update is to use recent improvements in camera and stage technology to increase the speed and stability of 3D structural illumination data acquisition. This update will have the added benefit of permitting in vivo 3D SI. Currently the quality and throughput of 3D SI microscopy is severely compromised by drift between consecutive sections in a 3D image stack. In this application, we seek funds to revolutionize the technological base of the OMX microscope for far faster and more stable data acquisition for both live and SI imaging. The proposed enhancements include 1) upgrading our lasers to pulsed lasers to achieve microsecond exposure times; 2) incorporating a sCMOS camera with faster acquisition rates, which in combination with the pulsed lasers will permit a 3D SI data stack to be acquired in 3 seconds rather than the current 13 minutes; 3) replacing our current xyz stage that introduces thermally induced drifts with a more modern stage to improve the stability, speed and depth of SI data acquisitions; and 4) upgrading the computer that will control the new stage motors to one with PCI/PCI(e) slots. These technological advances will benefit a great many biomedical research projects funded by NIH and will be of vital importance in elucidating the basic biological processes underlying many human diseases. PUBLIC HEALTH RELEVANCE: Studies of the dynamic processes occurring in living organisms in a non-perturbed setting is of vital importance in understanding the basic mechanisms of the biological processes underlying many human diseases. Rapid three-dimensional in vivo and super-resolution structured illumination imaging have become powerful new techniques in monitoring the changes that occur in the cell. This application will 1) greatly extend the ability of this technology to follow a biological process through its entire course without perturbation of its natural state and 2) enable super-resolution microscopy on live samples heretofore could only be examined in non-living specimens.
描述(由申请人提供):荧光显微镜具有独特的能力,能够以极大的特异性探测静态和实时过程,将分子和细胞成分的动态和/或定位与其功能联系起来。最近,一种新的显微镜平台 OMX 被设计用于采集亚秒级四维 (4D) 多色体内数据,具有双重功能以获得亚衍射结构照明 (SI) 固定样品的成像。在过去两年中,UCSF 的第一代 OMX 显微镜已从专用开发显微镜转变为生产显微镜,向 UCSF 内部和外部学术界的项目开放。由于更广泛的使用,用户确定了几项主要的期望改进,如果这些改进可以应用于 OMX 显微镜,将极大地扩展他们实现研究目标的能力。第一个更新是增加在不受干扰的自然状态下观察生物过程的时间。光毒性是活体显微镜观察的主要限制,会诱导形态变化、细胞进展延迟和细胞死亡。引入脉冲激光器将激发光减少到微秒曝光而不是当前的毫秒限制,将允许实现低得多的光子剂量,从而允许细胞在更长的时间内成像。第二个更新是利用相机和舞台技术的最新改进来提高 3D 结构照明数据采集的速度和稳定性。这 更新将具有允许体内 3D SI 的额外好处。目前,3D SI 显微镜的质量和吞吐量因 3D 图像堆栈中连续部分之间的漂移而受到严重影响。在此应用中,我们寻求资金来彻底改变 OMX 显微镜的技术基础,以便为实时和 SI 成像提供更快、更稳定的数据采集。拟议的增强功能包括 1) 将我们的激光器升级为脉冲激光器,以实现微秒级曝光时间; 2) 结合具有更快采集速率的 sCMOS 相机,与脉冲激光器相结合将允许在 3 秒内采集 3D SI 数据堆栈,而不是当前的 13 分钟; 3) 用更现代的平台替换当前引入热致漂移的 xyz 平台,以提高 SI 数据采集的稳定性、速度和深度; 4) 将控制新级电机的计算机升级为带有 PCI/PCI(e) 插槽的计算机。这些技术进步将使美国国立卫生研究院资助的大量生物医学研究项目受益,对于阐明许多人类疾病的基本生物过程至关重要。 公共卫生相关性:在不受干扰的环境中研究生物体中发生的动态过程对于理解许多人类疾病的生物过程的基本机制至关重要。快速体内三维和超分辨率结构照明成像已成为监测细胞中发生的变化的强大新技术。该应用将 1) 极大地扩展该技术在整个过程中跟踪生物过程而不扰动其自然状态的能力,2) 使迄今为止只能在非生命样本中检查活体样本的超分辨率显微镜成为可能。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JENNIFER C FUNG其他文献

JENNIFER C FUNG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JENNIFER C FUNG', 18)}}的其他基金

Quantitative Analysis of Meiotic Chromosome Motion and Pairing
减数分裂染色体运动和配对的定量分析
  • 批准号:
    10378113
  • 财政年份:
    2020
  • 资助金额:
    $ 17.76万
  • 项目类别:
Bioassay Facility Core
生物测定设施核心
  • 批准号:
    10382451
  • 财政年份:
    2020
  • 资助金额:
    $ 17.76万
  • 项目类别:
Bioassay Facility Core
生物测定设施核心
  • 批准号:
    10598498
  • 财政年份:
    2020
  • 资助金额:
    $ 17.76万
  • 项目类别:
Bioassay Facility Core
生物测定设施核心
  • 批准号:
    9918114
  • 财政年份:
    2020
  • 资助金额:
    $ 17.76万
  • 项目类别:
Quantitative Analysis of Meiotic Chromosome Motion and Pairing
减数分裂染色体运动和配对的定量分析
  • 批准号:
    10597641
  • 财政年份:
    2020
  • 资助金额:
    $ 17.76万
  • 项目类别:
Modeling and Analysis of Meiotic Homolog Pairing
减数分裂同源配对的建模和分析
  • 批准号:
    9291479
  • 财政年份:
    2016
  • 资助金额:
    $ 17.76万
  • 项目类别:
Modeling and Analysis of Meiotic Homolog Pairing
减数分裂同源配对的建模和分析
  • 批准号:
    9174051
  • 财政年份:
    2016
  • 资助金额:
    $ 17.76万
  • 项目类别:
Kinetics of Chromosome Synapsis During Meiosis
减数分裂过程中染色体突触的动力学
  • 批准号:
    8238339
  • 财政年份:
    2011
  • 资助金额:
    $ 17.76万
  • 项目类别:
Kinetics of Chromosome Synapsis During Meiosis
减数分裂过程中染色体突触的动力学
  • 批准号:
    8082173
  • 财政年份:
    2011
  • 资助金额:
    $ 17.76万
  • 项目类别:
Kinetics of Chromosome Synapsis During Meiosis
减数分裂过程中染色体突触的动力学
  • 批准号:
    8616074
  • 财政年份:
    2011
  • 资助金额:
    $ 17.76万
  • 项目类别:

相似国自然基金

生物质/含氮废弃物可控热裂解-定向催化重整过程调控与多还原组分分解炉脱硝机制研究
  • 批准号:
    52372024
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
流动乳品体系中嗜热混合菌生物被膜的形成过程及机制研究
  • 批准号:
    32302027
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
玉米秸秆生物炭投加对促进低浓度废水厌氧消化的过程与机理研究
  • 批准号:
    52300035
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混合营养型原生生物代谢可塑性对气候变暖和水体富营养化的响应过程及机制
  • 批准号:
    32371625
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
土壤环境中四溴双酚A及其衍生物的微生物转化过程及机制研究
  • 批准号:
    42377386
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Semiconductor Biomaterials to Speed Bone Healing: A Bioengineering-Driven Approach
半导体生物材料加速骨骼愈合:生物工程驱动的方法
  • 批准号:
    10587508
  • 财政年份:
    2023
  • 资助金额:
    $ 17.76万
  • 项目类别:
Optimization of electromechanical monitoring of engineered heart tissues
工程心脏组织机电监测的优化
  • 批准号:
    10673513
  • 财政年份:
    2023
  • 资助金额:
    $ 17.76万
  • 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 17.76万
  • 项目类别:
Cloud-Based Machine Learning and Biomarker Visual Analytics for Salivary Proteomics
基于云的机器学习和唾液蛋白质组生物标志物可视化分析
  • 批准号:
    10827649
  • 财政年份:
    2023
  • 资助金额:
    $ 17.76万
  • 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
  • 批准号:
    10831226
  • 财政年份:
    2023
  • 资助金额:
    $ 17.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了