Applying Computational Linguistics to Fundamental Components of Schizophrenia

将计算语言学应用于精神分裂症的基本组成部分

基本信息

  • 批准号:
    8512143
  • 负责人:
  • 金额:
    $ 24.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-04-01 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Schizophrenia is a uniquely human disorder with specific effects on the uniquely human capacity of language. Indeed, the gross and subtle language abnormalities of schizophrenia can be seen as fundamental illness components, perhaps even as part of a "biosignature." Bringing modern linguistics knowledge and tools to this disorder is a promising approach. We have formed a unique, inter-disciplinary collaboration (Dr. Compton, a schizophrenia researcher; Dr. Covington, a computational linguist; Dr. Lunden, a linguist specializing in phonetics; Dr. Cleary, a statistician; and Dr. Blanchard, an expert in measuring negative symptoms) to study some of the most perplexing and disabling facets of schizophrenia, the language/speech abnormalities linked closely to disorganization and negative symptoms. We will analyze speech abnormalities in patients with schizophrenia and unaffected controls. Rather than examining a single linguistic parameter, we will assess speech in "syntactic," "semantic," "pragmatic," and "phonetic" domains of linguistics. We will introduce cutting- edge innovation to this area of study by assessing these indices using psycholinguistics software developed by Dr. Covington's group so that our ratings of speech abnormalities will be highly objective and ultra-reliable. Our long-term goal is to develop multivariable models, and new methods for clinical and research settings, based on computational linguistic indices with inherent reliability from automation and proven validity. In this exploratory/developmental study, we will collect detailed symptom ratings from 100 schizophrenia patients, as well as audio-recorded speech samples and neurocognition scores from these patients and 100 controls. This study involves early/conceptual stages of new tools and models that could have a major translational impact. We strive to acquire new knowledge and then put it into action. For example, our new methods could translate into advanced clinical applications (e.g., highly reliable, voice-based monitoring of symptom progression or remission). Furthermore, our new models and methods could be a first step toward promising predictive models (e.g., combinations of factors useful in risk prediction among at-risk youth). These objectives are highly aligned with the NIMH Strategic Plan. Our 4 aims are to: (1) examine syntactic, semantic, and pragmatic linguistic parameters using computer analysis of speech, and assess their relation to disorganized symptoms; (2) examine phonetic linguistic parameters using computerized Fourier spectrum analysis of speech, and assess their relation to negative symptoms; (3) determine the combination of psycholinguistic parameters that best predicts patient versus control status; and (4) determine the combination of psycholinguistic parameters that best predicts disorganization scores and negative symptom scores among patients. Given the rich data we will collect, we will also be able to covary the effects of medication and substance use; examine variation in findings based on neutral v. emotionally laden content and spontaneous v. read speech; assess variance in linguistic measures attributable to cognitive domains; and compare results in first-episode and chronic patients.
描述(由申请人提供):精神分裂症是一种人类特有的疾病,对人类特有的语言能力有特定的影响。事实上,精神分裂症的严重和微妙的语言异常可以被视为基本疾病的组成部分,甚至可能被视为“生物特征”的一部分。将现代语言学知识和工具引入这种疾病是一种有前途的方法。我们已经形成了独特的跨学科合作(康普顿博士,精神分裂症研究员;科文顿博士,计算语言学家;伦登博士,语音学语言学家;克利里博士,统计学家;布兰查德博士,测量阴性症状的专家)研究精神分裂症的一些最令人困惑和最无力的方面,语言/言语异常与紊乱和阴性症状。我们将分析精神分裂症患者和未受影响的对照组的言语异常。我们将在语言学的“句法”、“语义”、“语用”和“语音”领域评估语音,而不是检查单个语言参数。我们将通过使用 Covington 博士小组开发的心理语言学软件评估这些指标,将尖端创新引入这一研究领域,以便我们对言语异常的评级将高度客观和极其可靠。 我们的长期目标是基于具有自动化固有可靠性和经过验证的有效性的计算语言指数,开发用于临床和研究环境的多变量模型和新方法。在这项探索性/发展性研究中,我们将收集 100 名精神分裂症患者的详细症状评分,以及这些患者和 100 名对照者的录音语音样本和神经认知评分。这项研究涉及可能产生重大转化影响的新工具和模型的早期/概念阶段。我们努力获取新知识,然后将其付诸行动。例如,我们的新方法可以转化为先进的临床应用(例如,高度可靠、基于语音的症状进展或缓解监测)。此外,我们的新模型和方法可能是迈向有前景的预测模型的第一步(例如,可用于高危青少年风险预测的因素组合)。这些目标与 NIMH 战略计划高度一致。我们的 4 个目标是:(1)使用计算机语音分析来检查句法、语义和语用语言参数,并评估它们与混乱症状的关系; (2) 使用计算机语音傅里叶谱分析检查语音语言参数,并评估它们与阴性症状的关系; (3) 确定最能预测患者与对照状态的心理语言参数组合; (4)确定最能预测患者紊乱评分和阴性症状评分的心理语言学参数组合。鉴于我们将收集的丰富数据,我们还能够共同改变药物和药物使用的影响;检查基于中性与情感丰富的内容和自发与阅读演讲的结果的差异;评估认知领域导致的语言测量差异;并比较首发患者和慢性患者的结果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL T COMPTON其他文献

MICHAEL T COMPTON的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL T COMPTON', 18)}}的其他基金

A Trial of a Police-Mental Health Linkage System for Jail Diversion and Reconnection to Care
警察与心理健康联动系统的尝试,用于监狱转移和重新获得护理
  • 批准号:
    10757245
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Randomized, Controlled Trial of Crisis Intervention Team (CIT) Mental Health Training for Police Officers
针对警官的危机干预小组 (CIT) 心理健康培训的随机对照试验
  • 批准号:
    10574243
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
Reducing Duration of Untreated Psychosis through Early Detection in a Large Jail System
通过在大型监狱系统中进行早期检测来缩短未经治疗的精神病的持续时间
  • 批准号:
    9976613
  • 财政年份:
    2019
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Trial of a Police-Mental Health Linkage System for Jail Diversion and Reconnection to Care
警察与心理健康联动系统的尝试,用于监狱转移和重新获得护理
  • 批准号:
    10163267
  • 财政年份:
    2018
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Trial of "Opening Doors to Recovery" for Persons with Serious Mental Illnesses
为严重精神疾病患者“打开康复之门”试点
  • 批准号:
    9414809
  • 财政年份:
    2017
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Novel Police-Mental Health Linkage System to Promote Pre-Booking Jail Diversion
新型警察心理健康联动系统,促进预约监狱转移
  • 批准号:
    8795525
  • 财政年份:
    2014
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Trial of "Opening Doors to Recovery" for Persons with Serious Mental Illnesses
为严重精神疾病患者“打开康复之门”试点
  • 批准号:
    8696071
  • 财政年份:
    2014
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Novel Police-Mental Health Linkage System to Promote Pre-Booking Jail Diversion
新型警察心理健康联动系统,促进预约监狱转移
  • 批准号:
    8737314
  • 财政年份:
    2014
  • 资助金额:
    $ 24.93万
  • 项目类别:
A Novel Police-Mental Health Linkage System to Promote Pre-Booking Jail Diversion
新型警察心理健康联动系统,促进预约监狱转移
  • 批准号:
    8584088
  • 财政年份:
    2013
  • 资助金额:
    $ 24.93万
  • 项目类别:
Applying Computational Linguistics to Fundamental Components of Schizophrenia
将计算语言学应用于精神分裂症的基本组成部分
  • 批准号:
    8792658
  • 财政年份:
    2013
  • 资助金额:
    $ 24.93万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Integrative Analysis of Adaptive Information Processing and Learning-Dependent Circuit Reorganization in the Auditory System
听觉系统中自适应信息处理和学习依赖电路重组的综合分析
  • 批准号:
    10715925
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
  • 批准号:
    10723292
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
Hearing Loss, Prognosis, and Long-Term Impact of Otitis Media with Effusion in Children
儿童渗出性中耳炎的听力损失、预后和长期影响
  • 批准号:
    10852143
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
Concurrent volumetric imaging with multimodal optical systems
多模态光学系统的并行体积成像
  • 批准号:
    10727499
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
  • 批准号:
    10656110
  • 财政年份:
    2023
  • 资助金额:
    $ 24.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了