Parallel Solid-State Electrodes for Turn-Key Intracellular Electrophysiology
用于交钥匙细胞内电生理学的并行固态电极
基本信息
- 批准号:8454608
- 负责人:
- 金额:$ 31.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAlkanesAlzheimer&aposs DiseaseAmplifiersApoptoticAreaAutistic DisorderAxonBasic ScienceBathingBiochemicalBiomimetic DevicesBiomimeticsBiotechnologyBrainBrain DiseasesBusinessesCaliberCell CommunicationCell Culture TechniquesCell SurvivalCell physiologyCellsCellular MembraneCharacteristicsChemicalsCollaborationsCommunicationCommunitiesComputer softwareCultured CellsDataData QualityDepositionDevelopmentDevicesDiseaseElectric CapacitanceElectrodesElectronicsElectrophysiology (science)EmbryoEquipmentEsthesiaEvaluationFeasibility StudiesFrequenciesFunctional disorderGlassGoalsGoldGrantHealthHeightHippocampus (Brain)HourIncubatorsIndustryInjuryIon ChannelIonsLeadLearningMasksMeasurementMeasuresMedicineMembraneMemoryMethodsMicrofabricationMolecularMonitorMovementNeuronsNeurosciencesNoisePathway interactionsPatternPerformancePersonal SatisfactionPhaseProceduresProcessProductionPropertyProtocols documentationPuncture procedureRattusReproducibilityResearch PersonnelResistanceResolutionRunningScientistSerumSignal TransductionSiliconSmall Business Innovation Research GrantSpecimenStrokeStructureSynapsesSynaptic TransmissionSystemTechniquesTechnologyTestingThickTight JunctionsTimeUniversitiesWidthWorkbasecell injurycell motilitycell preparationcognitive functioncostdesigndrug developmentdrug discoveryelectric impedanceelectrical measurementelectrical propertyimprovedinterestnanofabricationneurophysiologynew technologypatch clampprogramspublic health relevancerelating to nervous systemresponsesealsolid statetechnology developmenttoolvoltagevoltage clamp
项目摘要
DESCRIPTION (provided by applicant): Interconnected networks of cells in the brain called neurons underlie all cognitive functions. Key advances in our understanding of brain function during the last several decades have resulted from technologies that permit monitoring of electrical activity in neurons. This technique, broadly referred to as electrophysiology, permits the study of circuits of connected neurons responsible for sensation, movement, thought, learning, and memory. These techniques have also revealed how abnormal electrical signaling between neurons can lead to dysfunction as occurs in disorders such as autism or Alzheimer's disease as well as due to damage from a stroke or traumatic injury. The most sensitive form of electrophysiological recording monitors very small electrical currents in single cells with glass pipettes placed inside the neuron. These 'intracellular' patch-clamp recordings are a powerful tool for exploring how neurons work-and don't work. Despite these great advances, current intracellular recording technology has significant limitations: puncturing the cell damages it, leading to short recordings and abnormal biophysical and biochemical properties; skilled scientists are required, reducing the number of labs that can use this technique; and simultaneous recording from more than one or two neurons is rarely possible, making it challenging to study neuronal communication. Stealth Biosciences was established to overcome fundamental limitations of existing intracellular techniques. Our group invented a new technology which we call "Stealth" or biomimetic electrodes. These electrodes are able to fuse into the cellular membrane, providing a minimally damaging, electrically tight junction with the cell. Our initial measurements have demonstrated high-quality, long-term intracellular recordings that rival that of traditional patch-clamps. Biomimetic probes are based on standard silicon microfabrication processing, enabling large arrays of electrodes on inexpensive chips. Using support from a Phase I SBIR grant, we will refine the device and perform feasibility studies of this game changing, inexpensive, and easy-to-use intracellular recording platform. Our long-term goals are to develop this technology for wide commercial distribution among researchers to advance basic discoveries, accelerate drug development, and improve the health and well-being of those suffering from disorders of the brain. To achieve this ambitious program we outline two Phase I Specific Aims: Aim 1: Optimize Biomimetic Electrode Performance and Production In this Aim, we will assess the performance of different geometric and architectural designs for biomimetic electrodes. Designs will be evaluated for electronic characteristics as well as for electrophysiological performance with cultured neurons. The fabrication process will be streamlined and structured with the goal of eventual large-scale fabrication. Specific milestone goals include electrical performance of < 2mV noise, better than 0.1 ms time resolution, and <200MW input impedance. Timing: Q2 and Q3. Aim 2: Functional Characterization of Biomimetic Probes with Cells in Culture The second Aim will characterize the biomimetic device performance for recording from rat hippocampal neurons. This stringent test of intracellular recording capabilities will allow direct comparison to the gold- standard pipette-based patch-clamps. Cell recordings from the different probe designs in Aim 1 will be used to optimize fabrication techniques and probe design. Long-term recordings extending for days and possibly weeks will be used to demonstrate lifetime and temporal capabilities of the probes far exceeding what is possible with conventional patch-clamps. Timing: Q3 and Q4. We have brought together a strong team with expertise in electrophysiology, micro/nanofabrication, cell-to-cell communication, and business to support this technology development at Stealth Biosciences. At the end of this program, we will have an experimentally vetted system for 'turnkey' intracellular recordings. These will provide simple cell-preparation, >16 individually addressable electrodes per chip, high-quality recordings, and compatibility with existing electrophysiological software and recording hardware. We believe these devices will find broad interest within the neuroscience community, both as a basic research tool, and for advanced applications in drug discovery and personalized medicine.
描述(由申请人提供):大脑中称为神经元的细胞网络是所有认知功能的基础。在过去几十年中,我们对大脑功能的理解的关键进展是允许监测神经元电活动的技术。该技术广泛称为电生理学,允许研究负责感觉,运动,思想,学习和记忆的连接神经元的电路。这些技术还揭示了神经元之间的异常电信号传导如何导致功能障碍,因为自闭症或阿尔茨海默氏病等疾病发生,以及由于中风或创伤性损伤的损害。电生理记录的最敏感形式在单个细胞中监测了非常小的电流,其玻璃移液器放置在神经元内。这些“细胞内”贴片钳记录是探索神经元如何工作而无法正常工作的强大工具。尽管取得了巨大进展,但当前的细胞内记录技术仍存在重大局限性:刺穿细胞损害它,从而导致短期记录以及异常的生物物理和生化特性;需要熟练的科学家,减少可以使用此技术的实验室数量;而且,从多个或两个神经元中同时记录很少是可能的,这使得研究神经元沟通具有挑战性。 建立了隐形生物科学,以克服现有细胞内技术的基本局限性。我们的小组发明了一种新技术,我们称之为“隐身”或仿生电极。这些电极能够将其融合到细胞膜中,从而与细胞提供微小破坏的电紧密连接。我们的最初测量结果表明,与传统贴片夹的高质量,长期的细胞内记录相媲美。仿生探针基于标准的硅微结合处理,可在廉价芯片上进行大量的电极。利用I阶段SBIR赠款的支持,我们将完善设备并对此游戏变化,廉价且易于使用的细胞内录音平台进行可行性研究。我们的长期目标是开发这项技术,以在研究人员之间进行广泛的商业分销,以提高基本发现,加速药物开发,并改善患有大脑疾病的人的健康和福祉。为了实现这个雄心勃勃的计划,我们概述了两个I期特定目标:目标1:优化仿生电极性能和生产,我们将评估仿生电极的不同几何和建筑设计的性能。设计将评估电子特性以及使用培养神经元的电生理性能。制造过程将以最终大规模制造的目的进行简化和结构。特定的里程碑目标包括<2MV噪声的电性能,大于0.1 ms的时间分辨率和<200MW的输入阻抗。时间:Q2和Q3。 AIM 2:培养物中细胞的仿生探针的功能表征第二个目标将表征来自大鼠海马神经元记录的仿生装置性能。对细胞内记录功能的严格测试将可以直接与基于金标准移液器的贴片钳进行直接比较。 AIM 1中不同探针设计的细胞记录将用于优化制造技术和探针设计。长期记录延长了几天甚至几周的时间,将用于证明探针的寿命和时间功能,远远超过了传统的斑块夹。时间:Q3和Q4。我们汇集了一支拥有电生理学,微/纳米制作,细胞间通信和业务方面专业知识的强大团队,以支持隐形生物科学的这一技术开发。在该程序结束时,我们将拥有一个经过实验审查的系统,用于“交钥匙”内记录。这些将提供简单的细胞准备,> 16个单独的可寻址电极,每芯片,高质量的记录以及与现有电生理软件和记录硬件的兼容性。我们认为,这些设备将在神经科学社区中引起广泛的兴趣,无论是作为基础研究工具,还是药物发现和个性化医学的高级应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ari Chaney其他文献
Ari Chaney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Harnessing Electron-Donor-Acceptor Complexes to Enable Photo-Induced Metal-Free Cross-Coupling Reactions
利用电子供体-受体配合物实现光诱导无金属交叉偶联反应
- 批准号:
10715256 - 财政年份:2023
- 资助金额:
$ 31.63万 - 项目类别:
GCS-CEAS: a novel tool for exposure assessment during disaster response
GCS-CEAS:灾难响应期间暴露评估的新工具
- 批准号:
10699942 - 财政年份:2023
- 资助金额:
$ 31.63万 - 项目类别:
Deep Supercooling of Red Blood Cells: Towards Practical Long Term Storage
红细胞深度过冷:走向实用的长期储存
- 批准号:
10383717 - 财政年份:2020
- 资助金额:
$ 31.63万 - 项目类别:
Deep Supercooling of Red Blood Cells: Towards Practical Long Term Storage
红细胞深度过冷:走向实用的长期储存
- 批准号:
9886607 - 财政年份:2020
- 资助金额:
$ 31.63万 - 项目类别:
Deep Supercooling of Red Blood Cells: Towards Practical Long Term Storage
红细胞深度过冷:走向实用的长期储存
- 批准号:
10600827 - 财政年份:2020
- 资助金额:
$ 31.63万 - 项目类别: