COMBATING INFECTION THROUGH ATOMIC-SCALE MODELING OF UNIQUE BACTERIAL SYSTEMS
通过独特细菌系统的原子尺度建模来对抗感染
基本信息
- 批准号:8351847
- 负责人:
- 金额:$ 16.11万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAnti-Bacterial AgentsAntibioticsBacteriaBacterial Drug ResistanceBacterial InfectionsBindingCause of DeathCell WallCollaborationsCommunicable DiseasesComputer softwareComputing MethodologiesDataDevelopmentDiffusionDrug DesignDrug ReceptorsDrug TargetingDrug resistanceEnzyme InteractionEnzymesGoalsGram-Negative BacteriaHealthHumanInfectionInterventionLeadLengthLipidsMediatingMembraneModelingMolecularMolecular ConformationMolecular ModelsMotorNatureOrganismPathway interactionsPharmaceutical PreparationsPlayProcessProtein translocationProteinsResistanceResourcesRestRoleShapesStructureSupercomputingSystemTherapeutic InterventionTimeadvanced simulationcombatcomputerized toolsdesigndrug discoverydrug efficacyglycosylationinhibitor/antagonistinsightmolecular dynamicsmolecular modelingnext generationnovelnovel strategiespathogenic bacteriaresistance mechanismsimulationtranslocasevirtual
项目摘要
DESCRIPTION (provided by applicant): Infectious diseases are the second leading cause of death in the world. With novel classes of antibiotic drugs virtually nonexistent, and the resistance of pathogenic bacteria to current ones increasing rapidly, the development of new approaches is becoming an imperative for advancing human health efforts. Molecular modeling will play an essential role in these new approaches, due to the fundamentally atomic-scale nature of the critical structures, processes, and interactions underlying the action of both antibacterial agents and resistance mechanisms. In order to illuminate these structures and processes, the PI will focus on three systems specific and essential to bacteria: the bacterial cel wall, the outer membrane, and the SecA protein translocase. The cell wall provides shape and strength to bacteria, and is a canonical antibacterial target, yet its mesoscale structure remains unknown. In the first aim, the interaction of the enzymes synthesizing the cell wall with its underlying components will be modeled, permitting novel antibacterial agents that can also overcome drug resistance to be developed. In Gram-negative bacteria, the outer membrane rests beyond the cell wall and presents one of the greatest barriers to the entry of drug molecules. Furthermore, by modulating the few available entry pathways through existing protein channels, it plays a crucial role in drug efficacy. In the second aim, the PI will quantify
this modulation and its effect on drug influx. Finally, in the third aim, the PI will determine the
functional cycle of SecA, an ATP driven motor that enables the translocation of nascent proteins across membranes. By using structural data generated in the process, SecA will be exploited as a novel antibacterial target. All aims rely on advanced computational tools and methods, including cutting-edge molecular dynamics simulations. These simulations, which furnish dynamic views spanning a wide range of length and time scales, are enabled, in particular, by the emergence of petascale supercomputing resources and the software necessary to take full advantage of them.
描述(由申请人提供):传染病是世界上第二大死亡原因。由于新型抗生素药物几乎不存在,并且致病细菌对当前的细菌的抗性迅速增加,新方法的发展正成为促进人类健康努力的必要性。由于临界结构,过程和相互作用的基本性质性质,抗菌剂和抗药性机制的作用是基本的原子尺度,分子建模将在这些新方法中起着至关重要的作用。为了阐明这些结构和过程,PI将集中于三个针对细菌的系统:细菌壁,外膜和SECA蛋白易位酶。细胞壁为细菌提供了形状和强度,并且是典型的抗菌靶标,但其中尺度结构仍然未知。在第一个目的中,将建模酶合成细胞壁与其潜在成分的相互作用,从而允许新型抗菌剂,这些抗菌剂也可以克服耐药性的发展。在革兰氏阴性细菌中,外膜搁在细胞壁之外,并提出了进入药物分子进入的最大障碍之一。此外,通过通过现有蛋白质通道调节一些可用的进入途径,它在药物疗效中起着至关重要的作用。在第二个目标中,PI将量化
这种调节及其对药物涌入的影响。最后,在第三个目标中,PI将确定
SECA的功能循环,SECA是一种ATP驱动的电动机,可使新生蛋白跨膜的易位。通过使用过程中产生的结构数据,SECA将被利用为一种新的抗菌靶标。所有目标都依赖于先进的计算工具和方法,包括尖端的分子动力学模拟。这些模拟提供了跨越各种长度和时间尺度的动态视图,特别是通过Petascale超级计算资源的出现以及充分利用它们所需的软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James C. Gumbart其他文献
Resolving large conformational change pathways through machine learning and enhanced sampling simulations
- DOI:
10.1016/j.bpj.2021.11.551 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Yui Tik Pang;James C. Gumbart - 通讯作者:
James C. Gumbart
From static to dynamic: Rapid mapping of protein conformational transitions using DeepPath
- DOI:
10.1016/j.bpj.2023.11.349 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Yui Tik Pang;Lixinhao Yang;James C. Gumbart - 通讯作者:
James C. Gumbart
From closed to open: Addressing the role of the efflux pump AcrAB-TolC in antibiotic resistance
- DOI:
10.1016/j.bpj.2022.11.1689 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Katie M. Kuo;Helen I. Zgurskaya;James C. Gumbart - 通讯作者:
James C. Gumbart
The Role of the Protein-Conducting Channel in the Membrane Insertion of Transmembrane Segments
- DOI:
10.1016/j.bpj.2009.12.1213 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
James C. Gumbart;Christophe Chipot;Klaus Schulten - 通讯作者:
Klaus Schulten
Molecular insight into the transport of TMMs by MmpL3 in Mtb
- DOI:
10.1016/j.bpj.2021.11.444 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Lixinhao Yang;Yupeng Li;Atanu Acharya;Jinchan Liu;Helen I. Zgurskaya;Mary Jackson;James C. Gumbart - 通讯作者:
James C. Gumbart
James C. Gumbart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James C. Gumbart', 18)}}的其他基金
Elucidating the mechanisms of protein secretion across the outer membrane by bacterial autotransporters
阐明细菌自转运蛋白跨外膜分泌蛋白质的机制
- 批准号:
10736193 - 财政年份:2023
- 资助金额:
$ 16.11万 - 项目类别:
Integrative and Quantitative Biosciences Accelerated Training Environment
综合和定量生物科学加速培训环境
- 批准号:
10620308 - 财政年份:2021
- 资助金额:
$ 16.11万 - 项目类别:
Altering Hepatitis B Virus assembly through pharmacological intervention
通过药物干预改变乙型肝炎病毒组装
- 批准号:
10159864 - 财政年份:2020
- 资助金额:
$ 16.11万 - 项目类别:
Altering Hepatitis B Virus assembly through pharmacological intervention
通过药物干预改变乙型肝炎病毒组装
- 批准号:
10394388 - 财政年份:2020
- 资助金额:
$ 16.11万 - 项目类别:
Altering Hepatitis B Virus assembly through pharmacological intervention
通过药物干预改变乙型肝炎病毒组装
- 批准号:
10618786 - 财政年份:2020
- 资助金额:
$ 16.11万 - 项目类别:
Dynamic characterization of outer-membrane-protein biogenesis by the BAM and TAM complexes
BAM 和 TAM 复合物外膜蛋白生物合成的动态表征
- 批准号:
10204038 - 财政年份:2017
- 资助金额:
$ 16.11万 - 项目类别:
Dynamic characterization of outer-membrane-protein biogenesis by the BAM and TAM complexes
BAM 和 TAM 复合物外膜蛋白生物合成的动态表征
- 批准号:
9398209 - 财政年份:2017
- 资助金额:
$ 16.11万 - 项目类别:
COMBATING INFECTION THROUGH ATOMIC-SCALE MODELING OF UNIQUE BACTERIAL SYSTEMS
通过独特细菌系统的原子尺度建模来对抗感染
- 批准号:
8653533 - 财政年份:2013
- 资助金额:
$ 16.11万 - 项目类别:
相似国自然基金
三种凤尾蕨属植物中吡咯生物碱及其抗菌和抗HCV病毒功能研究
- 批准号:82360689
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于乏氧增强型超声抗菌剂的细菌生物膜感染协同治疗研究
- 批准号:22375101
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基于声动力的高效靶向抗菌剂开发及其用于幽门螺杆菌感染治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非典型I-型聚酮类抗菌剂NFAT-133的芳构化机理
- 批准号:32211530074
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
脑靶向新型反义抗菌剂递送系统的构建、评价及其递送机理研究
- 批准号:82202575
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of Targeted Antipseudomonal Bactericidal Prodrugs
靶向抗假单胞菌杀菌前药的开发
- 批准号:
10678074 - 财政年份:2023
- 资助金额:
$ 16.11万 - 项目类别:
Clinical decision support algorithm to optimize management of respiratory tract infection in children attending primary health facilities in Kilimanjaro Region, Tanzania
用于优化坦桑尼亚乞力马扎罗地区初级卫生机构儿童呼吸道感染管理的临床决策支持算法
- 批准号:
10734148 - 财政年份:2023
- 资助金额:
$ 16.11万 - 项目类别:
Antifungal discovery from previously uncultivated bacteria
从以前未培养的细菌中发现抗真菌药物
- 批准号:
10693593 - 财政年份:2023
- 资助金额:
$ 16.11万 - 项目类别:
Susceptibility and resistance of multidrug-resistant gram-negative bacteria to novel beta-lactam/beta-lactamase inhibitor combinations
多重耐药革兰氏阴性菌对新型β-内酰胺/β-内酰胺酶抑制剂组合的敏感性和耐药性
- 批准号:
10748676 - 财政年份:2023
- 资助金额:
$ 16.11万 - 项目类别:
Live attenuated non-transmissible (LANT) Klebsiella pneumoniae vaccines
肺炎克雷伯氏菌减毒非传染性 (LANT) 活疫苗
- 批准号:
10742028 - 财政年份:2023
- 资助金额:
$ 16.11万 - 项目类别: