Structures of Lipid-DNA Nonviral Gene Delivery Systems 4
脂质-DNA 非病毒基因传递系统的结构 4
基本信息
- 批准号:8502078
- 负责人:
- 金额:$ 31.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-05-01 至 2017-02-28
- 项目状态:已结题
- 来源:
- 关键词:AcidsAdenovirus VectorAffinityBiologicalBiological AssayCapsidCell membraneCellsChemicalsChemistryClinical TrialsCommunitiesComplexCryoelectron MicroscopyCustomCytosolDNADataDevelopmentElectrostaticsElementsEndosomesEngineeringEquilibriumEthylene GlycolsEventExhibitsFluorescenceGene DeliveryGene SilencingGenesGoalsHumanImmuneImmune responseIn VitroIncidenceInsertional MutagenesisKnowledgeLaboratoriesLeadLifeLigandsLipidsLiposomesMeasurementMeasuresMediatingMedical ResearchMembraneMethodsMicroscopyMinorityMolecularNon-Viral VectorNucleic Acid Regulatory SequencesNucleic AcidsOpticsPathway interactionsPeptidesPhasePopulationPropertyProteinsPublishingRGD (sequence)RNARadialReactionReportingResearchResearch ActivityResearch InstituteResourcesRetroviral VectorRoentgen RaysScienceSeriesSerumShapesSmall Interfering RNAStimulusStructureSurfaceSynchrotronsTailTechniquesTestingTherapeuticTimeToxic effectTransfectionViralViral VectorVirusX ray diffraction analysisX-Ray Diffractionbasecellular imagingdesigndisorder controlendosome membraneethylene glycolfluorescence microscopegene delivery systemgene therapygene therapy clinical trialimmunogenicimprovedin vivoliposome vectormembrane assemblynon-viral gene deliverynovelparticlepreventpublic health relevancesuccesssynchrotron radiationtherapeutic geneuptakevector
项目摘要
DESCRIPTION (provided by applicant): The current level of research activity involving gene therapy with either synthetic vectors (carriers) or engineered viruses is unprecedented. Cationic liposomes (CLs) have emerged worldwide as among the most prevalent synthetic vectors employed in human clinical trials, due to their near lack of immune response and low toxicity. CL-vectors are also able to carry large pieces of DNA (consisting of entire genes and regulatory regions) into cells, which is not feasible with engineered viral vectors due to the limited size of
virus capsids. CL_nucleic acid (CL_NA) complexes are employed both as DNA carriers and as siRNA (short interfering RNA; for gene silencing) carriers. However, the transfection efficiency and silencing efficiency of CL-vectors compared to viral vectors remains low for in vivo applications. Improvement of the efficiencies of synthetic vectors intended for in vivo applications requires a knowledge of the structures of CL-DNA and CL-siRNA complexes (in particular, the electrostatic interactions stabilizing assemblies of membranes and double-stranded NAs) as well as a mechanistic understanding of their interactions with cell membranes and the events leading to release of DNA and siRNA inside the cell. The aims of this research application are (1) to develop a new class of multi-component surface-functionalized CL-NA complexes, which will enable a mechanistic understanding of the initial pathway of complex uptake by the cell and the subsequent release of the NA-containing complex into the cell interior (cytosol), and (2) to understand the influence of lipid shape and membrane elastic properties on the formation of a new class of CL-DNA complexes possessing the membrane shape desired for interactions with endosome membranes inside the cell that optimally facilitate endosomal escape. Modern methods of organic and peptide chemistry will be employed to synthesize distinct PEG-lipids for cell targeting and endosome escape properties. These will be strategically combined in order to prepare high efficiency PEGylated CL-DNA complexes. The structures of CL-NA complexes will be solved using modern synchrotron x-ray diffraction techniques at the Stanford Synchrotron Radiation Lightsource and cryo-electron microscopy at the National Resource for Automated Molecular Microscopy at the Scripps Research Institute. Live-cell imaging with state-of-the-art optical fluorescence microscopes will allow us to visualize
the interactions between CL-NA complexes and cellular components. Their structures will be correlated to their biological activity by quantitative measurements of transfection efficiency and
silencing efficiency. The broad, long-term objective of our research is to develop a fundamental science base (via mechanistic studies of interactions of CL-NA complexes and cells) that will lead to the design and synthesis of synthetic carriers of DNA and siRNA optimized for gene therapeutics and disease control.
描述(由申请人提供):目前涉及使用合成载体(载体)或工程病毒进行基因治疗的研究活动水平是前所未有的。阳离子脂质体(CL)由于几乎缺乏免疫反应且毒性低,已成为全球人类临床试验中最常用的合成载体之一。 CL载体还能够将大片段DNA(由整个基因和调控区域组成)携带到细胞中,这对于工程化病毒载体来说是不可行的,因为DNA片段的大小有限。
病毒衣壳。 CL_核酸 (CL_NA) 复合物既可用作 DNA 载体,也可用作 siRNA(短干扰 RNA;用于基因沉默)载体。然而,与病毒载体相比,CL 载体的转染效率和沉默效率在体内应用中仍然较低。提高用于体内应用的合成载体的效率需要了解 CL-DNA 和 CL-siRNA 复合物的结构(特别是稳定膜和双链 NA 组件的静电相互作用)以及机械理解它们与细胞膜的相互作用以及导致细胞内 DNA 和 siRNA 释放的事件。本研究应用的目的是 (1) 开发一类新型多组分表面功能化 CL-NA 复合物,这将使人们能够从机理上理解细胞摄取复合物的初始途径以及随后释放 NA - 包含复合物进入细胞内部(细胞质),以及(2)了解脂质形状和膜弹性特性对新型 CL-DNA 复合物形成的影响,该复合物具有与细胞内内体膜相互作用所需的膜形状细胞那个最佳地促进内体逃逸。现代有机和肽化学方法将用于合成不同的 PEG-脂质,以实现细胞靶向和内体逃逸特性。这些将被战略性地组合以制备高效的聚乙二醇化 CL-DNA 复合物。 CL-NA 复合物的结构将使用斯坦福同步辐射光源的现代同步辐射 X 射线衍射技术和斯克里普斯研究所国家自动分子显微镜资源中心的冷冻电子显微镜来解析。使用最先进的光学荧光显微镜进行活细胞成像将使我们能够可视化
CL-NA 复合物与细胞成分之间的相互作用。 通过定量测量转染效率和它们的结构将与其生物活性相关联
消音效率。我们研究的广泛、长期目标是开发一个基础科学基础(通过 CL-NA 复合物和细胞相互作用的机制研究),这将导致设计和合成针对基因治疗优化的 DNA 和 siRNA 合成载体和疾病控制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CYRUS R SAFINYA其他文献
CYRUS R SAFINYA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CYRUS R SAFINYA', 18)}}的其他基金
Functionalized Lipid Carriers for Nucleic-Acid and Drug Therapeutics
用于核酸和药物治疗的功能化脂质载体
- 批准号:
10020420 - 财政年份:2018
- 资助金额:
$ 31.1万 - 项目类别:
Functionalized Lipid Carriers for Nucleic-Acid and Drug Therapeutics
用于核酸和药物治疗的功能化脂质载体
- 批准号:
10242074 - 财政年份:2018
- 资助金额:
$ 31.1万 - 项目类别:
Functionalized Lipid Carriers for Nucleic-Acid and Drug Therapeutics
用于核酸和药物治疗的功能化脂质载体
- 批准号:
9789048 - 财政年份:2018
- 资助金额:
$ 31.1万 - 项目类别:
STRETCHING THE LIMITS OF MEMBRANE CHARGE DENSITY USING DENDRIMER LIPIDS
使用树枝状脂质扩展膜电荷密度的极限
- 批准号:
8362446 - 财政年份:2011
- 资助金额:
$ 31.1万 - 项目类别:
SYNCHROTRON X-RAY STUDIES OF BIOMOLECULAR MATERIALS
生物分子材料的同步辐射 X 射线研究
- 批准号:
8362233 - 财政年份:2011
- 资助金额:
$ 31.1万 - 项目类别:
STERICALLY STABILIZED CATIONIC LIPID - DNA COMPLEXES USED IN GENE DELIVERY
空间稳定的阳离子脂质 - 用于基因传递的 DNA 复合物
- 批准号:
8362475 - 财政年份:2011
- 资助金额:
$ 31.1万 - 项目类别:
STRETCHING THE LIMITS OF MEMBRANE CHARGE DENSITY USING DENDRIMER LIPIDS
使用树枝状脂质扩展膜电荷密度的极限
- 批准号:
8169665 - 财政年份:2010
- 资助金额:
$ 31.1万 - 项目类别:
SYNCHROTRON X-RAY STUDIES OF BIOMOLECULAR MATERIALS
生物分子材料的同步辐射 X 射线研究
- 批准号:
8169977 - 财政年份:2010
- 资助金额:
$ 31.1万 - 项目类别:
SYNCHROTRON X-RAY STUDIES OF BIOMOLECULAR MATERIALS
生物分子材料的同步辐射 X 射线研究
- 批准号:
8170193 - 财政年份:2010
- 资助金额:
$ 31.1万 - 项目类别:
相似国自然基金
基于sIgA的V(D)J结构多样性探索腺病毒载体鼻喷新冠奥密克戎疫苗诱导的呼吸道粘膜免疫原性特征
- 批准号:82302607
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型腺病毒载体疫苗长效免疫机制
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
腺病毒载体新冠疫苗与灭活新冠疫苗诱导的免疫应答特征及序贯免疫策略研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
基于肠道腺病毒载体平台COVID-19粘膜疫苗的设计与筛选
- 批准号:82161138001
- 批准年份:2021
- 资助金额:150 万元
- 项目类别:国际(地区)合作与交流项目
纳米蛋白冠突破腺病毒载体疫苗预存免疫效应研究
- 批准号:
- 批准年份:2021
- 资助金额:56 万元
- 项目类别:面上项目
相似海外基金
Novel delivery platform and antigen design for an effective COVID-19 vaccine
用于有效的 COVID-19 疫苗的新型递送平台和抗原设计
- 批准号:
10175713 - 财政年份:2020
- 资助金额:
$ 31.1万 - 项目类别:
Novel delivery platform and antigen design for an effective COVID-19 vaccine
用于有效的 COVID-19 疫苗的新型递送平台和抗原设计
- 批准号:
10669131 - 财政年份:2020
- 资助金额:
$ 31.1万 - 项目类别:
Novel delivery platform and antigen design for an effective COVID-19 vaccine
用于有效的 COVID-19 疫苗的新型递送平台和抗原设计
- 批准号:
10461781 - 财政年份:2020
- 资助金额:
$ 31.1万 - 项目类别:
Functional role of serum Amyloid A in periapical inflammation
血清淀粉样蛋白 A 在根尖周炎症中的功能作用
- 批准号:
9505132 - 财政年份:2014
- 资助金额:
$ 31.1万 - 项目类别:
Functional role of serum Amyloid A in periapical inflammation
血清淀粉样蛋白 A 在根尖周炎症中的功能作用
- 批准号:
9390749 - 财政年份:2014
- 资助金额:
$ 31.1万 - 项目类别: