Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
基本信息
- 批准号:8450066
- 负责人:
- 金额:$ 30.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdoptedAlgorithmsBenchmarkingBindingBiologicalCommunitiesComplexComputer softwareComputing MethodologiesDataData QualityDecision TheoryDevelopmentDillDimensionsDiscriminationDockingElectrostaticsElementsEvaluationExhibitsFourier TransformFree EnergyGene Expression RegulationGenerationsGoalsGrantHandHealthImmune responseKnowledgeLeadLibrariesLigandsLinkMachine LearningMaintenanceMapsMetabolic ControlMethodsMetricModelingMolecular ConformationMonte Carlo MethodMotionMotivationMovementNational Institute of General Medical SciencesPaperPathway interactionsPlant RootsPositioning AttributePotential EnergyProbabilityProcessPropertyProteinsProtocols documentationPublished CommentReportingResearchRotationSamplingScoring MethodShapesSideSignal TransductionSimulateStagingStructureTechniquesTimeTransduction GeneTranslatingTranslationsUrsidae FamilyVertebral columnWorkWritingbasecombinatorialcostexperienceflexibilityimprovedinterestprogramsprotein complexprotein foldingprotein protein interactionprototypereceptorresearch studyscreeningsuccesstheories
项目摘要
DESCRIPTION (provided by applicant): All successful state-of-the-art protein docking methods employ a so called multistage approach. At the first stage of such approaches a rough energy potential is used to score billions of conformations. At a second stage, thousands of conformations with the best scores are retained and clustered based on a certain similarity metric. Cluster centers correspond to putative predictions/models. Recent work by the proposing team demonstrated that greater prediction quality can be achieved by properly exploring these clusters through a process called refinement. This work resulted in the development of a prototype refinement approach - the Semi-Definite programming-based Underestimation method (SDU). The central goal of the project is to build on the SDU success and develop a new high-throughput refinement protocol able to produce predictions of near-crystallographic quality in the most computationally efficient manner. Efficiency will be achieved by leveraging the funnel-like shape that binding free energy potentials exhibit. The specific aims are: (1) the development of a new clustering method that can classify the conformations retained from a first-stage method into clusters suitable for the proposed refinement strategy; (2) the characterization of the structure of the multi-dimensional funnel corresponding to each cluster and the development of an efficient refinement strategy to explore this funnel; (3) the development of a side-chain positioning algorithm appropriate for docking by leveraging Markov random field theory; and (4) the dissemination of the algorithms developed through the release to the research community of a software package and an automated refinement server. It is anticipated that the computational efficiency gains of the proposed refinement protocol over alternative Monte Carlo methods will exceed two orders of magnitude, while, at the same time, significantly improve upon the accuracy achieved by earlier refinement approaches. A novelty of the proposed work is in its use of sophisticated machinery from the fields of optimization and decision theory specially tailored to the biophysical properties of the docking problem. Techniques from convex and combinatorial optimization, machine learning, and Markov random fields are brought to bear on the refinement stage of multistage protein docking approaches. An important element of the work is the systematic characterization of multi-dimensional binding energy funnels. The existence of such funnels has been long conjectured but it has not led to new docking approaches so far. The proposed algorithms essentially achieve this goal by devising efficient strategies to identify, characterize, and explore these funnels.
描述(由申请人提供):所有成功的最先进的蛋白质对接方法采用了所谓的多阶段方法。在这种方法的第一阶段,粗糙的能量潜力用于得分数十亿个构象。在第二阶段,根据某些相似性度量,将数千种具有最佳分数的构象保留并聚集。聚类中心对应于推定的预测/模型。提议团队的最新工作表明,可以通过通过称为改进的过程正确探索这些簇来实现更高的预测质量。这项工作导致开发了一种原型改进方法 - 基于半准编程的低估方法(SDU)。该项目的核心目标是建立SDU成功,并开发一种新的高通量改进协议,能够以最有效的方式产生近乎结晶质量的预测。通过利用结合自由能电位表现出的漏斗样形状来实现效率。具体目的是:(1)开发一种新的聚类方法,该方法可以将从第一阶段方法保留的构象分类为适合拟议的改进策略的群集; (2)与每个集群相对应的多维漏斗结构的表征以及开发有效的改进策略以探索该漏斗; (3)通过利用马尔可夫随机场理论来对接的侧链定位算法的发展; (4)通过发布到软件包和自动改进服务器的研究社区开发的算法的传播。预计,替代蒙特卡洛方法对拟议的改进方案的计算效率提高将超过两个数量级,而同时,随着早期的改进方法所达到的准确性,可以显着提高。拟议工作的新颖性是它使用了从优化和决策理论领域的复杂机械,专门针对对接问题的生物物理特性量身定制的。来自凸和组合优化,机器学习和马尔可夫随机领域的技术在多阶段蛋白对接方法的改进阶段进行。该工作的一个重要要素是多维结合能量漏斗的系统表征。长期以来,这种漏斗的存在一直是猜想的,但迄今为止尚未导致新的对接方法。提出的算法实质上是通过制定有效的策略来识别,表征和探索这些漏斗的方法来实现这一目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmytro Kozakov其他文献
Dmytro Kozakov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmytro Kozakov', 18)}}的其他基金
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
- 批准号:
8633467 - 财政年份:2010
- 资助金额:
$ 30.5万 - 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
- 批准号:
8240452 - 财政年份:2010
- 资助金额:
$ 30.5万 - 项目类别:
Refinement Methods for Protein Docking based on Exploring Multi-Dimensional Energ
基于探索多维能量的蛋白质对接细化方法
- 批准号:
8042533 - 财政年份:2010
- 资助金额:
$ 30.5万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Cafe Move: A Novel Program for Prevention of Age-Related Physical Frailty
Cafe Move:预防与年龄相关的身体虚弱的新计划
- 批准号:
10861960 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Morphologic and Kinematic Adaptations of the Subtalar Joint after Ankle Fusion Surgery in Patients with Varus-type Ankle Osteoarthritis
内翻型踝骨关节炎患者踝关节融合手术后距下关节的形态和运动学适应
- 批准号:
10725811 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Informing alcohol policy: The impact of evidence-based alcohol warnings on consumption
告知酒精政策:基于证据的酒精警告对消费的影响
- 批准号:
10565120 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Developing a regionally representative risk assessment tool to identify men at highest risk of HIV acquisition in sub-Saharan Africa
开发具有区域代表性的风险评估工具,以确定撒哈拉以南非洲地区感染艾滋病毒风险最高的男性
- 批准号:
10762645 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别:
Structural and functional studies of YbtPQ for fighting bacterial infections
YbtPQ 对抗细菌感染的结构和功能研究
- 批准号:
10644889 - 财政年份:2023
- 资助金额:
$ 30.5万 - 项目类别: