Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
基本信息
- 批准号:8545205
- 负责人:
- 金额:$ 46.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-14 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAmplifiersBiologicalCaliberChargeComplexCustomDNADNA SequenceDNA analysisDNA-Directed DNA PolymeraseDetectionDevelopmentDevicesDiagnosisDiffusionElectronicsFrequenciesGenerationsGenomeImageLengthLipid BilayersMeasurementMeasuresMembraneNoiseOperating SystemOpticsPhotonsPost TechnicProcessReactionReadingResearchSemiconductorsSignal TransductionSodium ChlorideSpeedSystemTechniquesTechnologyTestingTimeTransducersbasecostdesigndetectordisorder preventionfluorophoreimprovedinstrumentationmillisecondnanofabricationnanoporeoperationsilicon nitridesingle moleculesolid state
项目摘要
DESCRIPTION (provided by applicant): There is strong demand for third-generation DNA sequencing systems to be single-molecule, massively- parallel, and real-time. For single-molecule optical techniques, however, the signal from a single fluorophore is typically < 2500 photons/sec (equivalent to electrical current levels on the order of 50 fA). This leads to complex optics to try to collect every photon emitted and makes scaling of the platforms difficult. Additionally, synthesis reactions must be intentionally slowed to 1 Hz (or slower) to allow sufficient imaging times for these weak, noisy optical signals. The limitations of single-molecule
optical techniques highlight key advantages of electrochemical detection approaches, which have significantly higher signal levels (typically three orders of magnitude higher), allowing for the possibility for high-bandwidth detection with the appropriate co-design of transducer, detector, and amplifier. Significant effort has been directed toward the development of nanopore technology as one potential bioelectronic transduction mechanism. Nanopores, however, have proved to be extremely limited by the relatively short time biomolecules spend in the charge-sensitive region of the pore. Restricted by the use of off- the-shelf electronics, the noise-limite bandwidth of nanopore measurements is typically less than 100 kHz, limiting the available sensing and actuation strategies and defying multiplexed integration which would be required for any sequencing application. In this four-year effort, we focus on improving significantly the noise-limited bandwidth of the detection electronics for nanopores allowing their full potential to
be realized through close integration of the electronics and the pore while simultaneously supporting high levels of parallelism with multiple nanopores on the same detection substrate. We consider techniques for integrating both solid-state (Specific Aim 1) and biological pores (Specific Aim 3) onto these measurement substrates in a massively parallel manner (Specific Aim 2). The techniques we propose for leveraging commodity CMOS technology and co-integrating detection electronics are completely general and have significance to all other single-molecule bioelectronic transduction approaches. These high-bandwidth integrated electronics will also enable "closed-loop" sensing and actuation (Specific Aim 4), allowing dynamic manipulation of capture and translocation dynamics at microsecond (or better) timescales.
描述(申请人提供):人们对第三代DNA测序系统的单分子、大规模并行和实时性有着强烈的需求。然而,对于单分子光学技术,来自单个荧光团的信号通常 < 2500 光子/秒(相当于 50 fA 数量级的电流水平)。这导致需要复杂的光学器件来尝试收集发射的每个光子,并使平台的扩展变得困难。此外,必须有意将合成反应减慢至 1 Hz(或更慢),以便为这些微弱、嘈杂的光信号提供足够的成像时间。 单分子的局限性
光学技术凸显了电化学检测方法的关键优势,其信号水平显着提高(通常高出三个数量级),从而可以通过传感器、检测器和放大器的适当协同设计进行高带宽检测。纳米孔技术作为一种潜在的生物电子转导机制的发展已付出了巨大的努力。然而,事实证明,纳米孔受到生物分子在孔的电荷敏感区域停留相对较短的时间的极大限制。受使用现成电子设备的限制,纳米孔测量的噪声限制带宽通常小于 100 kHz,限制了可用的传感和驱动策略,并且无法满足任何测序应用所需的多重集成。 在这四年的努力中,我们致力于显着提高纳米孔检测电子器件的噪声限制带宽,从而充分发挥其潜力
通过电子器件和孔的紧密集成来实现,同时支持同一检测基板上多个纳米孔的高水平并行性。我们考虑以大规模并行方式(具体目标 2)将固态(具体目标 1)和生物孔(具体目标 3)集成到这些测量基板上的技术。我们提出的利用商品 CMOS 技术和共集成检测电子学的技术是完全通用的,并且对所有其他单分子生物电子转导方法具有重要意义。这些高带宽集成电子器件还将实现“闭环”传感和驱动(具体目标 4),从而允许在微秒(或更好)时间尺度上动态操纵捕获和易位动态。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth L Shepard其他文献
Kenneth L Shepard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth L Shepard', 18)}}的其他基金
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10513407 - 财政年份:2021
- 资助金额:
$ 46.87万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10490475 - 财政年份:2021
- 资助金额:
$ 46.87万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10375951 - 财政年份:2021
- 资助金额:
$ 46.87万 - 项目类别:
A Wireless micro-ECoG Prosthesis for Speech
用于语音的无线微型 ECoG 假肢
- 批准号:
10706320 - 财政年份:2021
- 资助金额:
$ 46.87万 - 项目类别:
Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
- 批准号:
10266395 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Direct bioelectronic detection of SARS-CoV-2 from saliva using single-molecule field-effect transistor array
使用单分子场效应晶体管阵列直接生物电子检测唾液中的 SARS-CoV-2
- 批准号:
10320987 - 财政年份:2020
- 资助金额:
$ 46.87万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8719765 - 财政年份:2012
- 资助金额:
$ 46.87万 - 项目类别:
Integrated, multiplexed high-frequency electronic analysis of DNA in nanopores
纳米孔中 DNA 的集成、多重高频电子分析
- 批准号:
8365334 - 财政年份:2012
- 资助金额:
$ 46.87万 - 项目类别:
Rapid Allergenic Particle Identification (RAPID)
快速过敏性颗粒识别 (RAPID)
- 批准号:
7337686 - 财政年份:2007
- 资助金额:
$ 46.87万 - 项目类别:
Rapid Allergenic Particle Identification (RAPID)
快速过敏性颗粒识别 (RAPID)
- 批准号:
8073325 - 财政年份:2007
- 资助金额:
$ 46.87万 - 项目类别:
相似国自然基金
微波敏感型铁死亡纳米放大器的构建及其增敏肝癌消融-免疫联合治疗的应用与机制研究
- 批准号:82302368
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于太赫兹行波管放大器的高效率多路功率合成技术的研究
- 批准号:62371102
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
紧凑型大功率微波速调管放大器研究
- 批准号:62371108
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于SISL的三维集成封装宽带高效率功率放大器研究
- 批准号:62301387
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有多电流合成结点的新型功率放大器架构及智能设计技术研究
- 批准号:62371077
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Neural Recording and Simulation Tools to Address the Mesoscale Gap
解决中尺度差距的神经记录和模拟工具
- 批准号:
10739544 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Outer hair cells and noise-induced hearing loss
外毛细胞和噪音引起的听力损失
- 批准号:
10862034 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
A wireless closed-loop sleep modulation system-on-chip
无线闭环睡眠调制片上系统
- 批准号:
10733872 - 财政年份:2023
- 资助金额:
$ 46.87万 - 项目类别:
Enzymeless, controlled electrostatic ratcheting in solid-state nanopores
固态纳米孔中的无酶、受控静电棘轮
- 批准号:
10683967 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别:
A scalable electrokinetic flow cytometer and cell sorter
可扩展的动电流式细胞仪和细胞分选仪
- 批准号:
10546934 - 财政年份:2022
- 资助金额:
$ 46.87万 - 项目类别: