The control of neural transmission by glycosylation
通过糖基化控制神经传递
基本信息
- 批准号:8162799
- 负责人:
- 金额:$ 31.36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAffectAnimal ModelAreaArrhythmiaBehavioralBiochemicalBiologicalBiological ModelsBiological ProcessBiologyBiomedical ResearchBrainCell AdhesionCell Culture TechniquesCellsComplexDataDefectDevelopmentDiseaseDrosophila genusElectrophysiology (science)EnzymesEpilepsyFutureGenesGeneticGlycoproteinsGoalsHumanHuman bodyIndividualInvertebratesKnowledgeLightLinkLocomotionLongevityMediatingMicroscopyMolecularMotor NeuronsNervous system structureNeurologicNeuromuscular JunctionNeuronal PlasticityNeuronsNeurophysiology - biologic functionOrganParalysedPhenotypePhysiologyPlayPolysaccharidesPropertyRegulationResearchRoleSialic AcidsSialyltransferasesSpecificityStudy modelsSynapsesSynaptic TransmissionTechniquesTemperatureTestingTherapeuticchronic painflygenetic manipulationglycosylationmultidisciplinarynervous system developmentnervous system disorderneural circuitneurodevelopmentneuroregulationnew technologynovelnovel therapeuticspleiotropismprotein functionrelating to nervous systemresearch studysialylationtoolvoltagevoltage gated channel
项目摘要
DESCRIPTION (provided by applicant): Our research focuses on the molecular, cellular, and systemic mechanisms underlying the neural functions of glycoprotein sialylation. Although the brain is the organ with the most prominent sialylation in human body, and recent studies implicated sialylation defects in several neurological diseases, the functions of this important type of glycosylation in the nervous system are still poorly understood. The intricacies of glycosylation, increased pleiotropy and redundancy, and limitations of available genetic approaches significantly hinder the research on sialylation in the overwhelmingly complex vertebrate nervous system. Thus, a suitable model system would be an important tool for more efficient and accelerated studies in this area. Here we propose to use Drosophila as a model organism to investigate the neural functions of N-linked sialylation. We previously characterized Drosophila sialyltransferase, DSiaT, a sole sialyltransferase in Drosophila. This enzyme is highly homologous to its human counterpart which also shares with DSiaT several functional properties, including similar acceptor specificity and an elevated expression in the brain. Our recent experiments revealed that the function of sialylation in Drosophila is limited to the nervous system. We found that sialylation regulates neural transmission and the development of neuromuscular junctions. Abnormal sialylation results in Drosophila in prominent neurological phenotypes, including temperature-sensitive paralysis, defects in locomotion, and a significantly shortened life span. Our experiments indicated that a simple N-linked glycoprotein sialylation plays a prominent role in modulating neural activity, which establishes a new paradigm of the involvement of glycosylation in the nervous system regulation. This novel, nervous system-specific function of N-linked sialylated glycans is potentially conserved between flies and humans. The current project will extend our previous research and will investigate (i) the cellular mechanisms underlying the neural function of sialylation in Drosophila, (ii) the molecular mechanisms of sialylation-mediated control of neural excitability, and (iii) the role of sialylation in neural plasticity. We will use a multidisciplinary strategy, combining the advantages of Drosophila model system, including its exceptional amenability to genetic manipulations, exhaustively characterized neural development, low redundancy and pleiotropy of sialylation genes, with well-established electrophysiological and behavioral approaches, cell culture and biochemical techniques, as well as novel technologies for glycan analyses. This project will shed light on the crucial evolutionarily conserved principles of neural regulation and development, which could be useful for biomedical research and relevant therapeutic strategies. Our research will also establish Drosophila as a versatile model system for future studies of the role of glycosylation in the nervous system.
PUBLIC HEALTH RELEVANCE: Glycosylation modifies protein functions and profoundly affects the development and physiology of human brain. We will use Drosophila (fruit flies) as an experimentally amenable, genetically tractable and well-studied model organism to elucidate the important functions of glycosylation in the nervous system. Our research will shed light on biological mechanisms that may suggest novel therapeutic strategies for curing neurological diseases with abnormal neural excitability, including as epilepsy and chronic pain.
描述(由申请人提供):我们的研究重点是糖蛋白唾液酸化神经功能背后的分子、细胞和系统机制。尽管大脑是人体中唾液酸化最显着的器官,并且最近的研究表明唾液酸化缺陷与多种神经系统疾病有关,但这种重要的糖基化类型在神经系统中的功能仍然知之甚少。糖基化的复杂性、多效性和冗余性的增加以及可用遗传方法的局限性极大地阻碍了对极其复杂的脊椎动物神经系统中唾液酸化的研究。因此,合适的模型系统将成为该领域更有效和加速研究的重要工具。在这里,我们建议使用果蝇作为模式生物来研究 N-连锁唾液酸化的神经功能。我们之前对果蝇唾液酸转移酶 DSiaT 进行了表征,它是果蝇中唯一的唾液酸转移酶。这种酶与其人类对应物高度同源,后者也与 DSiaT 具有一些功能特性,包括相似的受体特异性和在大脑中表达升高。我们最近的实验表明,果蝇的唾液酸化功能仅限于神经系统。我们发现唾液酸化调节神经传递和神经肌肉接头的发育。唾液酸化异常会导致果蝇出现显着的神经表型,包括温度敏感性麻痹、运动缺陷和寿命显着缩短。我们的实验表明,简单的N-连接糖蛋白唾液酸化在调节神经活动中发挥着重要作用,这建立了糖基化参与神经系统调节的新范例。 N 连接唾液酸聚糖的这种新颖的神经系统特异性功能在果蝇和人类之间可能是保守的。当前的项目将扩展我们之前的研究,并将研究(i)果蝇唾液酸化神经功能的细胞机制,(ii)唾液酸化介导的神经兴奋性控制的分子机制,以及(iii)唾液酸化在果蝇中的作用神经可塑性。我们将采用多学科策略,结合果蝇模型系统的优势,包括其对遗传操作的特殊适应性、详尽的神经发育特征、唾液酸化基因的低冗余性和多效性,以及完善的电生理学和行为方法、细胞培养和生化技术以及聚糖分析的新技术。该项目将揭示神经调节和发育的重要进化保守原理,这可能对生物医学研究和相关治疗策略有用。我们的研究还将果蝇建立为一个多功能模型系统,用于未来研究糖基化在神经系统中的作用。
公共健康相关性:糖基化改变蛋白质功能并深刻影响人脑的发育和生理机能。我们将使用果蝇(果蝇)作为一种易于实验、遗传上易于处理且经过充分研究的模型生物,以阐明糖基化在神经系统中的重要功能。我们的研究将揭示生物学机制,可能为治疗神经兴奋性异常的神经系统疾病(包括癫痫和慢性疼痛)提出新的治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
VLADISLAV M PANIN其他文献
VLADISLAV M PANIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('VLADISLAV M PANIN', 18)}}的其他基金
The role of sialylation in glia-neuron communications and stress responses
唾液酸化在胶质神经元通讯和应激反应中的作用
- 批准号:
10928423 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
The role of sialylation in glia-neuron communications and stress responses
唾液酸化在胶质神经元通讯和应激反应中的作用
- 批准号:
10928423 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
- 批准号:
9384393 - 财政年份:2017
- 资助金额:
$ 31.36万 - 项目类别:
Functional mechanisms underlying Dystroglycan-dependent and independent roles of protein O-mannosylation in the nervous system
蛋白质 O-甘露糖基化在神经系统中依赖和独立作用的功能机制
- 批准号:
10207792 - 财政年份:2017
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8513429 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8894325 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8702249 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
The control of neural transmission by glycosylation
通过糖基化控制神经传递
- 批准号:
8309155 - 财政年份:2011
- 资助金额:
$ 31.36万 - 项目类别:
Genetics and Biochemistry of Sialylation in Drosophila
果蝇唾液酸化的遗传学和生物化学
- 批准号:
7942241 - 财政年份:2009
- 资助金额:
$ 31.36万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Plasma neurofilament light chain as a potential disease monitoring biomarker in Wolfram syndrome
血浆神经丝轻链作为 Wolfram 综合征潜在疾病监测生物标志物
- 批准号:
10727328 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
Mechanisms Underpinning Afterload-Induced Atrial Fibrillation
后负荷诱发心房颤动的机制
- 批准号:
10679796 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
The Injectrode- An injectable, easily removable electrode as a trial lead for baroreceptor activation therapy to treat hypertension and heart failure
Injectrode——一种可注射、易于拆卸的电极,作为压力感受器激活疗法的试验引线,以治疗高血压和心力衰竭
- 批准号:
10697600 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别:
The role and regulation of mitochondrial localization in mature neurons.
成熟神经元线粒体定位的作用和调节。
- 批准号:
10634116 - 财政年份:2023
- 资助金额:
$ 31.36万 - 项目类别: