Multi-scale modeling of sleep behaviors in social networks
社交网络中睡眠行为的多尺度建模
基本信息
- 批准号:8453066
- 负责人:
- 金额:$ 49.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-18 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Sleep is critical to a wide range of biological functions. Inadequate sleep results in impaired cognitive performance and mood, and adverse health outcomes including obesity, diabetes, and cardiovascular disease. Recent evidence suggests that sleep behaviors can spread between individuals connected by a social network and that these behaviors can even influence drug use in teenagers. While models exist separately for quantifying connectivity within social networks and for modeling sleep, there are currently no combined models for predicting and studying the emergent dynamics of sleep behaviors within social networks.
We therefore propose to develop multi-scale physiologically-based models of the effects of social interactions on sleep behaviors. We have assembled a trans-disciplinary team of individuals who have: (i) developed mathematical methods for quantifying social network interactions; (ii) developed a physiologically based model of sleep and circadian physiology, including the effects of wake-promoting stimuli and drugs; (iii) studied healthy and pathological sleep behaviors under inpatient and outpatient conditions, including in undergraduate students; (iv) developed techniques for collecting multiple physiological and behavioral variables; and (v) studied pattern recognition and signal processing techniques for analyzing multimodal data.
We will develop statistical and mathematical models from experimental data collected from 8 groups of closely-connected MIT undergraduates using mobile phones and wearable sensors to measure sleep patterns and duration, light exposure, subjective measures of sleepiness and mood, and social interactions including texting, calls, internet use, and spatial proximity to other participants. We will determine how social interactions, sleep duration and timing, light exposure, sleepiness and mood interact. These social interaction effects will then be added to our physiological sleep and circadian model, which will also be extended from the individual to the population level, while the physiological model results will inform the social network model work.
Once developed, the mathematical model will be used to explore how emergent dynamics depend on network properties. Specifically, we will simulate the student network, including the observed rates and effects of social interactions. We will then test the effects of modifying the network properties, including the strengths of interactions and the degree of population heterogeneity (model parameter variability).
We anticipate that the mathematical model developed in this project will provide a new means of predicting the dynamics of sleep behaviors within social networks. Due to its multi-scale nature, the model will relate observations at the network level to interactions between individuals. This will allow us to simulate candidate strategies for intervening in populations wit unhealthy sleep behaviors. Given the alarming increase in insufficient sleep in the U.S., and the rapidly escalating use of social media, establishing models that can be used to improve sleep behaviors could potentially improve multiple health outcomes.
描述(由申请人提供):睡眠对于广泛的生物学功能至关重要。睡眠不足会导致认知表现和情绪受损,以及包括肥胖,糖尿病和心血管疾病在内的不良健康结果。最近的证据表明,睡眠行为可以在社交网络联系的个体之间传播,这些行为甚至可以影响青少年的药物使用。尽管模型分别存在用于量化社交网络内的连通性和建模睡眠,但目前尚无组合模型来预测和研究社交网络中睡眠行为的新兴动态。
因此,我们建议开发社会互动对睡眠行为的影响的多尺度生理模型。我们组建了一个由个人组成的跨学科团队:(i)开发了用于量化社交网络互动的数学方法; (ii)开发了一种基于生理的睡眠和昼夜节律生理学模型,包括启动刺激性刺激和药物的影响; (iii)在住院和门诊疾病(包括本科生)下研究了健康和病理睡眠行为; (iv)开发了用于收集多个生理和行为变量的技术; (v)研究了用于分析多模式数据的模式识别和信号处理技术。
我们将使用手机和可穿戴传感器从8组紧密连接的MIT本科生收集的实验数据中开发统计和数学模型,以测量睡眠方式和持续时间,持续时间,轻度暴露,嗜睡和情绪的主观衡量以及社交互动,包括发短信,互联网,互联网,互联网,互联网,互联网,互联网,互联网,和与其他参与者的空间统治。我们将确定社交互动,睡眠持续时间和时机,轻度暴露,嗜睡和情绪相互作用。然后,这些社交互动效应将被添加到我们的生理睡眠和昼夜节律模型中,该模型也将从个人扩展到人群水平,而生理模型结果将为社交网络模型的工作提供信息。
一旦开发,数学模型将用于探索新兴动态如何取决于网络属性。具体来说,我们将模拟学生网络,包括观察到的社交互动的效果和影响。然后,我们将测试修改网络属性的效果,包括相互作用的优势和种群异质性的程度(模型参数变异性)。
我们预计该项目中开发的数学模型将提供一种预测社交网络中睡眠行为动态动态的新方法。由于其多尺度性质,该模型将在网络层面上将观察结果与个人之间的相互作用联系起来。这将使我们能够模拟候选策略,以干预人口不健康的睡眠行为。鉴于美国睡眠不足以及社交媒体迅速升级的使用令人震惊,建立可用于改善睡眠行为的模型可能会改善多种健康状况。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Charles A Czeisler的其他基金
Real-time breath metabolomics: A new direction for circadian biomarkers
实时呼吸代谢组学:昼夜节律生物标志物的新方向
- 批准号:1052601410526014
- 财政年份:2022
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Influence of Nocturnal Light Exposure on the Impairment of Glucose Tolerance Induced by Chronic Sleep Restriction
夜间光照对慢性睡眠限制所致糖耐量损害的影响
- 批准号:1045873810458738
- 财政年份:2021
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Influence of Nocturnal Light Exposure on the Impairment of Glucose Tolerance Induced by Chronic Sleep Restriction
夜间光照对慢性睡眠限制所致糖耐量损害的影响
- 批准号:1029797910297979
- 财政年份:2021
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Influence of Nocturnal Light Exposure on the Impairment of Glucose Tolerance Induced by Chronic Sleep Restriction
夜间光照对慢性睡眠限制所致糖耐量损害的影响
- 批准号:1065032410650324
- 财政年份:2021
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Proteomic and Transcriptomic Biomarkers of Circadian Timing
昼夜节律的蛋白质组和转录组生物标志物
- 批准号:1024628910246289
- 财政年份:2020
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Recurrent circadian disruption & pancreatic B-cell responsiveness in older peopl
周期性昼夜节律紊乱
- 批准号:85981308598130
- 财政年份:2013
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Multi-Center Trial of Limiting PGY2&3 Resident Work Hours on Patient Safety-CCC
限制PGY2的多中心试验
- 批准号:83734728373472
- 财政年份:2012
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Multi-Center Trial of Limiting PGY2&3 Resident Work Hours on Patient Safety-CCC
限制PGY2的多中心试验
- 批准号:85444888544488
- 财政年份:2012
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Multi-Center Trial of Limiting PGY2&3 Resident Work Hours on Patient Safety-CCC
限制PGY2的多中心试验
- 批准号:86877288687728
- 财政年份:2012
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
相似国自然基金
中国父母情绪教养行为对青少年非自杀性自伤的影响及其机制
- 批准号:32300894
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
miR-125b-1-3p介导童年期不良经历影响青少年自伤行为易感性的队列研究
- 批准号:82373596
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
青春期发育对青少年心理行为发展的影响及生理机制
- 批准号:32300888
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
亲子依恋对青少年自伤行为的影响及其脑机制
- 批准号:82301740
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
空气污染和生物钟基因的独立和联合作用对青少年攻击行为发展轨迹的影响及作用机制
- 批准号:82373599
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Parent-adolescent informant discrepancies: Predicting suicide risk and treatment outcomes
父母与青少年信息差异:预测自杀风险和治疗结果
- 批准号:1075126310751263
- 财政年份:2024
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Maternal immune activation remodeling of offspring glycosaminoglycan sulfation patterns during neurodevelopment
神经发育过程中后代糖胺聚糖硫酸化模式的母体免疫激活重塑
- 批准号:1050830510508305
- 财政年份:2023
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Is gestational sleep apnea a previously unrecognized cause of maternal immune activation that predisposes male offspring to disease-relevant neural dysfunction?
妊娠期睡眠呼吸暂停是否是一种以前未被认识到的母体免疫激活的原因,导致男性后代容易出现与疾病相关的神经功能障碍?
- 批准号:1068097210680972
- 财政年份:2023
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Imaging transcriptomics across developmental stages of early psychotic illness
早期精神病发展阶段的转录组学成像
- 批准号:1066478310664783
- 财政年份:2023
- 资助金额:$ 49.43万$ 49.43万
- 项目类别:
Application of the Telemedicine for Reach, Education, Access, and Treatment delivery model to engage emerging adults in Diabetes Self-Management Education and Support (TREAT-ED)
应用远程医疗覆盖、教育、获取和治疗提供模式,让新兴成年人参与糖尿病自我管理教育和支持 (TREAT-ED)
- 批准号:1065194710651947
- 财政年份:2023
- 资助金额:$ 49.43万$ 49.43万
- 项目类别: