Systematic Phenotypic Analysis of the Gram-positive Envelope
革兰氏阳性包膜的系统表型分析
基本信息
- 批准号:8594970
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-01 至 2016-11-30
- 项目状态:已结题
- 来源:
- 关键词:Affinity ChromatographyAnimal ModelAnthrax diseaseAntibiotic ResistanceAntibiotic susceptibilityAntibioticsAreaBacillus anthracisBacillus subtilisBacteriaBiological AssayBiological ProcessCell ShapeCell WallCell physiologyCellsChemicalsClostridium difficileCommunicationCommunitiesComplexCulture MediaCytolysisDataData SetDatabasesDefectDetergentsEnvironmentEscherichia coliExperimental ModelsFamilyGene DeletionGenesGeneticGenetic EpistasisGenomeGenomicsGram-Negative BacteriaGram-Positive BacteriaGrowthHomeostasisHumanHuman MicrobiomeIndividualLarge-Scale SequencingLeadLipidsListeria monocytogenesListeriosisMapsMeasuresMediatingMembraneMetalsMethodologyMicrobiologyOrphanOsmolar ConcentrationOsmotic ShocksPathway interactionsPenicillin-Binding ProteinsPenicillinsPeptidoglycanPermeabilityPhenotypePhosphate CarriersPlayPneumoniaPolymersProcessProteinsPseudomembranous ColitisRegulonResearchResearch PersonnelResourcesRoleShapesSigma FactorSiteSpecificityStreptococcus pneumoniaeStressSystemTeichoic AcidsThickTimeVancomycinbasecell envelopedeletion analysisdeletion libraryenvironmental stressorgene functionhigh throughput screeninghigh throughput technologyhuman diseaseinsightmicrobiomemutantnovelpathogenperiplasmprotein protein interactionpublic health relevanceresearch studyresponseretinal rods
项目摘要
DESCRIPTION (provided by applicant): The bacterial cell is encased by an envelope that is in direct and constant contact with the environment. Thus, the envelope is the site where environmental fluctuations (e.g., changes in osmolarity) are first sensed by the bacterium. Also, components of the envelope mediate communication among other bacteria as well as commensal or pathogenic interactions between bacteria and their human hosts. These interactions play critical roles in complex environments such as the human gut microbiome. Finally, many of the most successful antibiotics in widespread use target the envelope (e.g., penicillin and vancomycin), and the efficacy of antibiotics with cytoplasmic targets is often reduced by issues with envelope permeability. For these reasons, the envelope is an area of intense research focus. Research approaches that investigate a single gene product or pathway have been immensely important in defining individual components of the envelope, but are limited in determining connections between pathways and are, by definition, low-throughput. Our lab (the Carol Gross lab at UCSF) previously took a systematic approach to investigate envelope function in the Gram-negative bacterium Escherichia coli by exposing a gene deletion library to a panel of environmental stressors that targeted the envelope. Using this dataset, we were able to make significant advances in our understanding of peptidoglycan (PG) synthesis, a key component of the bacterial cell wall. However, the envelope of Gram-positive bacteria, such as Bacillus subtilis, is fundamentally different from that of E. coli. The B. subtilis envelope lacs an outer membrane (and, thus, a distinct periplasmic space), includes teichoic acid polymers that are absent in E. coli, and contains a layer of PG that is several times thicker than found in E. coli. In this study, I will adapt the high-throughput approach previously used by our lab to investigate the B. subtilis envelope. First, I will systematically identify phenotypes for single deletion mutants of all non-essential genes in B. subtilis and a subset of double deletions. Then, I will use these datasets to investigate specific envelope processes such as proteolytic cascades that regulate ECF sigma factors, poorly characterized targets of the envelope-related two-component systems, functional redundancy amongst penicillin-binding proteins, and pathways involving the C55 undecaprenol phosphate carrier lipid. Finally, I will use a novel phenotype I discovered during construction of the B. subtilis deletion library to determine the function of ylaN, a gene involved in cell shape. These high-throughput methodologies will accelerate the assignment of phenotypes and functions to the large number of uncharacterized putative envelope genes in B. subtilis. The discoveries made in this study will likely extend to important Gram-positive human pathogens, as well as human commensals in the gut microbiome.
描述(由申请人提供):细菌细胞被包膜包裹,与环境直接且持续接触。因此,包膜是细菌首先感知环境波动(例如渗透压的变化)的部位。此外,包膜的成分还介导其他细菌之间的通讯以及细菌与其人类宿主之间的共生或致病相互作用。这些相互作用在人类肠道微生物组等复杂环境中发挥着至关重要的作用。最后,许多广泛使用的最成功的抗生素都针对包膜(例如青霉素和万古霉素),而针对细胞质的抗生素的功效往往会因包膜通透性问题而降低。由于这些原因,信封是一个研究热点领域。研究单个基因产物或途径的研究方法对于定义包膜的各个组成部分非常重要,但在确定途径之间的联系方面受到限制,并且根据定义,通量较低。我们的实验室(加州大学旧金山分校的卡罗尔·格罗斯实验室)之前采用了一种系统方法,通过将基因删除文库暴露于一组针对包膜的环境压力源来研究革兰氏阴性细菌大肠杆菌的包膜功能。使用该数据集,我们能够在对肽聚糖(PG)合成(细菌细胞壁的关键组成部分)的理解方面取得重大进展。然而,革兰氏阳性菌(例如枯草芽孢杆菌)的包膜与大肠杆菌的包膜有根本不同。枯草芽孢杆菌的包膜具有外膜(因此具有独特的周质空间),包含大肠杆菌中不存在的磷壁酸聚合物,并且含有一层比大肠杆菌中厚数倍的 PG 层。在这项研究中,我将采用我们实验室以前使用的高通量方法来研究枯草芽孢杆菌包膜。首先,我将系统地鉴定枯草芽孢杆菌中所有非必需基因的单缺失突变体和双缺失子集的表型。然后,我将使用这些数据集来研究特定的包膜过程,例如调节 ECF sigma 因子的蛋白水解级联、包膜相关双组分系统的特征不明的靶标、青霉素结合蛋白之间的功能冗余以及涉及 C55 十一烯醇磷酸盐的途径载体脂质。最后,我将使用我在枯草芽孢杆菌缺失文库构建过程中发现的一种新表型来确定 ylaN(一种与细胞形状有关的基因)的功能。这些高通量方法将加速枯草芽孢杆菌中大量未表征的假定包膜基因的表型和功能分配。这项研究的发现可能会扩展到重要的革兰氏阳性人类病原体,以及肠道微生物组中的人类共生体。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason M. Peters其他文献
Modular, inducible, and titratable expression systems for Escherichia coli and Acinetobacter baumannii
适用于大肠杆菌和鲍曼不动杆菌的模块化、诱导型和可滴定表达系统
- DOI:
10.1101/2024.05.28.596346 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Emily E. Bacon;Jennifer S. Tran;Nischala Nadig;Jason M. Peters - 通讯作者:
Jason M. Peters
Jason M. Peters的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason M. Peters', 18)}}的其他基金
Cross-species Analysis of Bacterial Gene Networks
细菌基因网络的跨物种分析
- 批准号:
10711500 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于中医经典名方干预效应差异的非酒精性脂肪性肝病动物模型证候判别研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
利用肝癌动物模型开展化学可控的在体基因编辑体系的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
雌激素抑制髓系白血病动物模型中粒细胞异常增生的机制
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
无菌动物模型与单细胞拉曼技术结合的猴与人自闭症靶标菌筛选及其机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Teixobactin Development for Tuberculosis
Teixobactin 治疗结核病的开发
- 批准号:
10546221 - 财政年份:2022
- 资助金额:
$ 4.92万 - 项目类别:
The regulatory role of an RNA binding protein in two-component signaling and its impact on cellular physiology and anthrax pathogenesis
RNA结合蛋白在双组分信号传导中的调节作用及其对细胞生理学和炭疽发病机制的影响
- 批准号:
10436636 - 财政年份:2021
- 资助金额:
$ 4.92万 - 项目类别:
Facility and Building System Upgrades Support for the Howard T. Ricketts Biocontainment Laboratory
为 Howard T. Ricketts 生物防护实验室提供设施和建筑系统升级支持
- 批准号:
10631368 - 财政年份:2021
- 资助金额:
$ 4.92万 - 项目类别:
Optimizing a Universal Influenza Subunit Nano/Microparticulate Vaccine
优化通用流感亚单位纳米/微粒疫苗
- 批准号:
10328236 - 财政年份:2020
- 资助金额:
$ 4.92万 - 项目类别: