Femtosecond laser-produced sub-surface cuts to halt focal epileptic seizures
飞秒激光产生的表面下切割可阻止局灶性癫痫发作
基本信息
- 批准号:8551771
- 负责人:
- 金额:$ 23.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-30 至 2015-08-31
- 项目状态:已结题
- 来源:
- 关键词:4-AminopyridineAblationAcuteAdverse effectsAffectAnimal ModelBasic ScienceBiological PreservationBiomedical EngineeringBlood CirculationBlood VesselsBrainCalciumCellsChemicalsChronicClinicalCollaborationsContainmentDataDyesEffectivenessEpilepsyExcisionFluorescenceFutureGoalsGrantHumanImageInjection of therapeutic agentInterruptionLaboratory ResearchLasersLateralLeftLocationMedicalMethodsMicroinjectionsModelingMolecularMonitorMorbidity - disease rateNeocortexNeurologicNeuronsNeurosciencesNeurosurgeonOperative Surgical ProceduresOpticsPartial EpilepsiesPatientsPatternPeripheralPharmaceutical PreparationsPharmacologyPhysiologic pulseProcessRattusResearchResearch PersonnelRodentSeizuresSeriesSideSignal TransductionSiteSomatosensory CortexStimulusSurfaceSurgical incisionsTechniquesTechnologyTestingTissuesUniversitiesVibrissaeWidthWorkbasebrain tissuein vivoinformation processingmedical schoolsmillimeterneocorticalnovelpreventpublic health relevancerelating to nervous systemresearch studyresponsesomatosensorytherapy developmenttooltwo-photon
项目摘要
DESCRIPTION (provided by applicant): Focal neocortical epilepsy is a largely intractable medical problem, with most cases responding poorly to anti-convulsive medications and current surgical treatment options limited because of the likelihood of neurological deficits. Because much information processing is vertically organized in cortex, while seizure propagation occurs primarily through lateral connections, a series of incisions could prevent the spread or initiation
of seizures but largely preserve function. These incisions must not cut the blood vessels on the brain surface and it remains unclear which cortical layers are best cut to achieve optimal seizure control and minimal neurological impact. Tightly-focused femtosecond laser pulses provide a unique tool to make micrometer-scale cuts several millimeters within the bulk of a tissue with minimal collateral damage. We hypothesize that using these cuts to transect the neural connections in targeted cortical layers will block the initiation or propagation of focally initiatd epileptic seizures. Because these cuts target only horizontal connections in a specific cortical layer and the majority of the neural connectivity of the cortex is preserved, there will be minimal
neurological deficit. A primary goal of this proposal is to determine which cortical layer(s) shoul be cut and in what geometric pattern to maximally interfere with seizure initiation and propagation while minimally affecting normal function. In Aim 1, we test the acute efficacy of femtosecond laser cuts to specific cortical layers in preventing epilepsy initiation and propagation. Epileptic seizures are modeled in rats by microinjection of 4-aminopyridine into cortex. Local field potential recordings and two-photon calcium sensitive dye imaging are used to monitor neural activity and seizure propagation. Femtosecond laser ablation is used to encircle or subdivide the seizure initiation site with subsurface cuts. First, we determine which cortical layers must be transected to prevent seizures from propagating outside of the encircled region. The goal is to determine the minimum number of layers to cut for seizure containment. Building on recent data that suggests that clinical seizures result from the coalescence of microseizures, we next investigate whether a grid pattern incised at the seizure initiation site can prevent seizure initiation by separating microdomains. In Aim 2, we explore potential side effects of the most promising laser cuts from Aim 1 by recording changes in evoked signals in somatosensory cortex after whisker stimulation. These experiments will test, in animal models, a new laser-based surgical method for the treatment of focal neocortical epilepsy. In addition, this work will provide valuable, in vivo data on cortical layer- specific initiation and propagatio of seizures. If the acute animal model experiments proposed here as well as future studies that evaluate the longer-term effectiveness prove successful then human implementation is feasible using recently-developed laser technology and would enable layer-specific cuts to be produced in all but the bottom of sulci, opening the door to new surgical treatments for epilepsy.
描述(由申请人提供):局灶性新皮质癫痫是一个很大程度上棘手的医学问题,大多数病例对抗惊厥药物的反应较差,并且由于神经学缺陷的可能性而受到限制。由于大量信息处理是在皮层中垂直组织的,而癫痫发作的传播主要是通过横向连接发生的,因此一系列切口可以防止传播或开始
癫痫发作,但在很大程度上保留了功能。这些切口一定不能切断脑表面上的血管,并且尚不清楚哪些皮质层最好切割,以实现最佳的癫痫发作控制和最小的神经系统影响。紧密的飞秒激光脉冲提供了一种独特的工具,可以使微尺尺寸切割在大部分的组织内,并具有最小的附带损害。我们假设使用这些切割来横断靶向皮质层中的神经连接将阻止局部启动癫痫发作的启动或传播。因为这些切割仅针对特定皮层中的水平连接,并且保留了皮质的大多数神经连接性,因此将最少
神经缺陷。该提案的主要目标是确定要切割哪个皮质层,以及哪些几何模式可以最大程度地干扰癫痫发作和传播,同时最小化了正常功能。在AIM 1中,我们测试了飞秒激光切割的急性疗效,以防止癫痫发作和传播。癫痫发作是通过将4-氨基吡啶显微注射到皮层中的大鼠中模拟的。局部现场电位记录和两光钙敏感染料成像用于监测神经活动和癫痫发作。飞秒激光消融用于用地下切割包围或细分癫痫发起位点。首先,我们确定必须透射哪些皮层层,以防止癫痫发作在包围区域外传播。目的是确定要切割的癫痫发作的最小层数。基于最新数据,这表明临床癫痫发作是由微蛋白的合并引起的,我们接下来研究了在癫痫发作部位切开的网格模式是否可以通过分离微区域来防止癫痫发作。在AIM 2中,我们通过记录晶须刺激后体感皮质中诱发信号的变化,探索AIM 1最有前途的激光切割的潜在副作用。这些实验将在动物模型中测试一种基于激光的新型外科手术方法,用于治疗局灶性新皮层癫痫。此外,这项工作将提供有关皮质层特异性启动和癫痫发作的有价值的体内数据。如果此处提出的急性动物模型实验以及评估长期有效性的未来研究证明了成功的实施,那么使用最近开发的激光技术是可行的,并且可以在Sulci底部以外的所有底部生产出层特异性的切割,从而为新的外科手术治疗开放了新的外科手术治疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHRIS B SCHAFFER其他文献
CHRIS B SCHAFFER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHRIS B SCHAFFER', 18)}}的其他基金
Metabolic and neural activity normalization by cerebral blood flow increase in AD/ADRD models
AD/ADRD 模型中脑血流量增加使代谢和神经活动正常化
- 批准号:
10657935 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
Administrative Supplements to Existing NIH Grants and Cooperative Agreements
对现有 NIH 拨款和合作协议的行政补充
- 批准号:
9929915 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
STALLED CAPILLARY FLOW: A NOVEL MECHANISM FOR HYPOPERFUSION IN ALZHEIMER DISEASE
毛细血管血流停滞:阿尔茨海默病低灌注的一种新机制
- 批准号:
9756240 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
STALLED CAPILLARY FLOW: A NOVEL MECHANISM FOR HYPOPERFUSION IN ALZHEIMER DISEASE
毛细血管血流停滞:阿尔茨海默病低灌注的一种新机制
- 批准号:
8863677 - 财政年份:2015
- 资助金额:
$ 23.82万 - 项目类别:
Reducing morbidity in surgical resections: Third-harmonic generation microscopy a
降低手术切除的发病率:三次谐波发生显微镜a
- 批准号:
8720770 - 财政年份:2013
- 资助金额:
$ 23.82万 - 项目类别:
Chronic imaging of cellular dynamics after cortical microhemorrhage
皮质微出血后细胞动力学的慢性成像
- 批准号:
8719850 - 财政年份:2013
- 资助金额:
$ 23.82万 - 项目类别:
Reducing morbidity in surgical resections: Third-harmonic generation microscopy a
降低手术切除的发病率:三次谐波发生显微镜a
- 批准号:
8568862 - 财政年份:2013
- 资助金额:
$ 23.82万 - 项目类别:
Chronic imaging of cellular dynamics after cortical microhemorrhage
皮质微出血后细胞动力学的慢性成像
- 批准号:
8579569 - 财政年份:2013
- 资助金额:
$ 23.82万 - 项目类别:
Femtosecond laser-produced sub-surface cuts to halt focal epileptic seizures
飞秒激光产生的表面下切割可阻止局灶性癫痫发作
- 批准号:
8445824 - 财政年份:2012
- 资助金额:
$ 23.82万 - 项目类别:
Role of Cortical Microvascular Lesions in Amyloid-Beta Accumulation
皮质微血管病变在β-淀粉样蛋白积累中的作用
- 批准号:
7826969 - 财政年份:2009
- 资助金额:
$ 23.82万 - 项目类别:
相似国自然基金
玛纳斯河流域上游吸收性气溶胶来源及其对积雪消融的影响研究
- 批准号:42307523
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向肝癌射频消融的智能建模与快速动力学分析方法研究及其临床验证
- 批准号:62372469
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
IRF9调控CD8+T细胞介导微波消融联合TIGIT单抗协同增效抗肿瘤的作用机制
- 批准号:82373219
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
建立可诱导细胞消融系统揭示成纤维细胞在墨西哥钝口螈肢体发育及再生中的作用
- 批准号:32300701
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肿瘤源PPIA介导结直肠癌肝转移射频消融术残瘤化疗抵抗的机制研究
- 批准号:82302332
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Role of Gastrointestinal GCPII in Visceral Pain Signaling
胃肠道 GCPII 在内脏疼痛信号传导中的作用
- 批准号:
10678103 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
Functional, structural, and computational consequences of NMDA receptor ablation at medial prefrontal cortex synapses
内侧前额皮质突触 NMDA 受体消融的功能、结构和计算后果
- 批准号:
10677047 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
A Novel VpreB1 Anti-body Drug Conjugate for the Treatment of B-Lineage Acute Lymphoblastic Leukemia/Lymphoma
一种用于治疗 B 系急性淋巴细胞白血病/淋巴瘤的新型 VpreB1 抗体药物偶联物
- 批准号:
10651082 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别:
Redox stress resilience in aging skeletal muscle
衰老骨骼肌的氧化还原应激恢复能力
- 批准号:
10722970 - 财政年份:2023
- 资助金额:
$ 23.82万 - 项目类别: