Development of an ex vivo derived laser drilled temporomandibular disc scaffold
离体激光钻孔颞下颌椎间盘支架的开发
基本信息
- 批准号:8386352
- 负责人:
- 金额:$ 19.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-05 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAmericasAnatomyBiochemicalBiological ProcessBiomechanicsBone ResorptionCarbon DioxideCartilageCell SurvivalCell physiologyCell surfaceCell-Cell AdhesionCellsCharacteristicsClinicalCollagenComputer softwareCulture TechniquesDataDeformityDegenerative polyarthritisDermisDevelopmentDiseaseEngineeringEvaluationExtracellular MatrixFamily suidaeFatty acid glycerol estersForeign-Body ReactionFreeze DryingFrequenciesFunctional disorderGene ExpressionGoalsHealthHumanImplantInheritedJawJointsLasersLeadLifeLiquid substanceMechanical StimulationMechanicsMetabolismMethodologyMorphologyMovementNational Institute of Dental and Craniofacial ResearchNatural regenerationNatureNutrientOperative Surgical ProceduresPathologyPatientsPatternPenetrationPhenotypePhysiologic pulsePhysiologicalPorosityProcessPropertyRehydrationsResearchSilasticSimulateSpecific qualifier valueStressStructureStructure of articular disc of temporomandibular jointTechniquesTeflonTemporomandibular JointTemporomandibular Joint DisordersTestingThickTissue EngineeringTissue GraftsTissuesUnited StatesUnited States Food and Drug AdministrationVariantWaterarticular cartilagecell motilitydesigndriving forceexperiencefunctional restorationimprovedjoint loadingresponsescaffoldtissue regeneration
项目摘要
DESCRIPTION (provided by applicant): The National Institute of Dental and Craniofacial Research (NIDCR) recognizes the significance of TMJ disorders and leads the Federal research initiative to develop clinically superior treatment options for those suffering with severe TMD. In
severe cases of damage or internal derangement (ID) the disc is surgically removed, unfortunately current alloplastic disc replacements such as Proplast-Teflon and Silastic implants are prone to fragmentation and tearing, leading to complications such as bone resorption and osteoarthritis. In response to these shortcomings, a variety of alternative approach's for restoring the function and movement capabilities of the TMJ have been assessed. A great deal of promise has been shown with the application of tissue engineering principles to replace damaged or diseased tissues with regenerated, 'living' tissues. With this methodology no additional damage to the surrounding anatomy of the joint would be experienced, and the newly implanted re-engineered disc would ideally accommodate typical loads of the joint and regain physiologically functionality. In this proposal we utilize a native porcine TMJ disc as a xenogenic
ex vivo scaffold, and further modified the discs structure to enhance reseeding and transport conditions to improve both mechanical and biological function. Our preliminary data has shown the utility of the approach with decellularized scaffolds maintaining mechanical properties similar
to native discs. Our goal is to further develop a physiologically compatible xenogenic acellular temporomandibular articular disc scaffold with modified microporosity using a high precision laser ablation technique to overcome transport and cell migration deficiencies. Our longer-term goal is to use this scaffold either as a direct acellular implant or as a regenerated disc (human cells) as a total disc replacement strategy for those suffering with severe TMD or ID. To accomplish this goal we propose the following specific aims: Specific aims. Specific Aim 1: Characterize a naturally derived temporomandibular disc scaffold which maintains native extracellular matrix characteristics and has parameters that allow for precise laser interactions. Specific Aim 2: Design a high precision laser ablation paradigm that optimizes artificial porosity geometry for transport capability while minimizing mechanical degradation due to volume loss and microenvironment disruption. Then to evaluate seeding methodology and culture conditions for cell ingrowth, cell metabolism, and gene expression to assess fibrochondocyte cell function in relation to structural changes to the scaffold. Specific Aim 3: Test the hypothesis that physiologic mechanical stimulation encourages fibrochondrocytes to remodel the pTMJ scaffold toward its native mechanical properties, and that the engineered disc can be used to simulate disease conditions for further evaluation. We hypothesize that by improving transport conditions and enhancing cell seeding and nutrient delivery using a high precision laser ablation technique that significant improvements in both mechanical and biological function will be attained. These advances may lead to improved treatment options for patients suffering with irreparably damaged Temporomandibular Joint (TMJ) discs.
PUBLIC HEALTH RELEVANCE: It is estimated by the Food and Drug Administration that 25 percent of the United States of America populous suffer from a Temporomandibular Disorder (TMD) and about 70 percent of those people are afflicted by disease, damage, or deformity of the TMJ disc. In severe cases of damage or internal derangement (ID) the disc is surgically removed, unfortunately current treatments are far from sufficient. In response to these shortcomings we will develop a physiologically compatible xenogenic acellular temporomandibular articular disc scaffold with modified microporosity using a high precision laser ablation technique to overcome transport and cell migration deficiencies effectively enhancing tissue regeneration for use as a total disc replacement strategy for those suffering with severe TMD or ID.
描述(由申请人提供):国家牙科和颅面研究所(NIDCR)认识到TMJ疾病的重要性,并领导联邦研究计划,为患有严重TMD患者的人开发临床上卓越的治疗方案。在
严重的损伤或内部危险(ID)的椎间盘被手术去除,不幸的是,当前的同种异体椎间盘替换(例如预防性TEFLON和SILASTIC植入物)易于碎裂和撕裂,导致骨吸收和骨关节炎等并发症。为了应对这些缺点,已经评估了各种用于恢复TMJ功能和运动能力的替代方法。使用组织工程原理的应用来替代被再生的“活”组织替代受损或患病的组织的诺言。使用这种方法,将不会造成关节的周围解剖结构的额外损害,并且新植入的重新设计的椎间盘理想地可以容纳关节的典型负载并恢复生理功能。在此提案中,我们利用天然猪TMJ碟作为异种
离体支架,并进一步修改了圆盘结构,以增强恢复和运输条件,以改善机械和生物学功能。我们的初步数据显示了该方法的实用性,其脱细胞支架保持机械性能相似
到本地光盘。我们的目标是使用高精度激光消融技术进一步开发一种具有修改的微孔度的生理兼容的颞叶颞叶椎间盘椎间盘支架,以克服运输和细胞迁移缺陷。我们的长期目标是将此脚手架用作直接的细胞植入物或再生盘(人类细胞)作为患有严重TMD或ID的人的总圆盘替代策略。为了实现这一目标,我们提出以下特定目标:特定目的。特定目的1:表征自然衍生的颞下椎间盘支架,该椎间盘支架保持天然细胞外基质特性,并具有允许精确激光相互作用的参数。具体目标2:设计高精度激光消融范式,可优化人工孔隙率几何形状,以便传输能力,同时由于体积损失和微环境中断而导致的机械降解。然后评估播种方法和培养条件,以评估细胞向内生长,细胞代谢和基因表达,以评估与脚手架结构变化有关的纤维软骨细胞功能。特定目的3:检验以下假设:生理机械刺激鼓励纤维软骨细胞将PTMJ支架重塑为其天然机械性能,并且该工程椎间盘可用于模拟疾病条件以进行进一步评估。我们假设,通过使用高精度激光消融技术改善运输条件并改善细胞播种和养分递送,可以实现机械和生物学功能的显着改善。这些进步可能会导致患有不可避免受损的颞下颌关节(TMJ)椎间盘的患者改善治疗选择。
公共卫生相关性:食品药品监督管理局估计,美国有25%的人口遭受了颞下颌疾病(TMD),其中约70%的人遭受了TMJ的疾病,损害或畸形折磨光盘。在严重损坏或内部危险(ID)的情况下,椎间盘被手术切除,不幸的是,目前的治疗远远不够。为了应对这些缺点,我们将使用高精度的激光消融技术来开发一种具有修改的微孔力的生理兼容的临时颞叶颞关节盘脚手架,以克服运输和细胞迁移缺陷有效地增强组织的整体磁盘再生策略严重的TMD或ID。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Stuart McFetridge其他文献
Peter Stuart McFetridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Stuart McFetridge', 18)}}的其他基金
Development of an ex vivo derived laser drilled temporomandibular disc scaffold
离体激光钻孔颞下颌椎间盘支架的开发
- 批准号:
8505476 - 财政年份:2012
- 资助金额:
$ 19.77万 - 项目类别:
Development and assessment of a natural bio scafold for vascular reconstruction
用于血管重建的天然生物支架的开发和评估
- 批准号:
7834484 - 财政年份:2009
- 资助金额:
$ 19.77万 - 项目类别:
Development and assessment of a natural bio scafold for vascular reconstruction
用于血管重建的天然生物支架的开发和评估
- 批准号:
8035751 - 财政年份:2008
- 资助金额:
$ 19.77万 - 项目类别:
Development and assessment of a natural bio scafold for vascular reconstruction
用于血管重建的天然生物支架的开发和评估
- 批准号:
7782693 - 财政年份:2008
- 资助金额:
$ 19.77万 - 项目类别:
Development and assessment of a natural bio scafold for vascular reconstruction
用于血管重建的天然生物支架的开发和评估
- 批准号:
7475394 - 财政年份:2008
- 资助金额:
$ 19.77万 - 项目类别:
Development and assessment of a natural bio scafold for vascular reconstruction
用于血管重建的天然生物支架的开发和评估
- 批准号:
8234075 - 财政年份:2008
- 资助金额:
$ 19.77万 - 项目类别:
Development and assessment of a natural bio scafold for vascular reconstruction
用于血管重建的天然生物支架的开发和评估
- 批准号:
7577406 - 财政年份:2008
- 资助金额:
$ 19.77万 - 项目类别:
相似国自然基金
入侵植物美洲商陆富集重金属增强其入侵性的地上地下联合机制
- 批准号:32371751
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
磷酸化酪氨酸信号起始美洲大蠊附肢再生的生理功能与上游激活机制
- 批准号:32370510
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
饲料组胺引起美洲鳗鲡肠道炎症的分子机制研究
- 批准号:32303022
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
强光介导下CpDll基因参与调控美洲南瓜叶缘裂刻形成的分子机制
- 批准号:32372709
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
白细胞介素-1受体相关激酶4(IRAK4)调控裸仁美洲南瓜种皮形成的分子机理
- 批准号:32360759
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Modeling chikungunya virus neuroinvasion and neuropathogenesis in mice
基孔肯雅病毒神经侵袭和小鼠神经发病机制的建模
- 批准号:
10790337 - 财政年份:2023
- 资助金额:
$ 19.77万 - 项目类别:
Late/chronic corneal injury following threat chemical exposure
威胁化学品暴露后的晚期/慢性角膜损伤
- 批准号:
10507990 - 财政年份:2022
- 资助金额:
$ 19.77万 - 项目类别:
Elucidating the Critical Role of Low-Density Lipoprotein Receptor Class A Domain Containing 3 in Venezuelan Equine Encephalitis Virus Neuron Infection and Pathogenesis
阐明含 3 的低密度脂蛋白 A 类受体结构域在委内瑞拉马脑炎病毒神经元感染和发病机制中的关键作用
- 批准号:
10728883 - 财政年份:2022
- 资助金额:
$ 19.77万 - 项目类别:
Oral HPV Research Among Latin Americans Living with HIV (ORAL - H² Study)
拉丁美洲艾滋病毒感染者的口腔 HPV 研究(ORAL - H² 研究)
- 批准号:
10528596 - 财政年份:2022
- 资助金额:
$ 19.77万 - 项目类别:
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 19.77万 - 项目类别: