Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
基本信息
- 批准号:8460942
- 负责人:
- 金额:$ 14.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:AblationAdultAdvisory CommitteesAgonistAnemiaAortaBiochemicalBiological AssayBiomechanicsBloodBlood flowBostonCell LineageCell surfaceCellsChildhoodClinicalCritical PathwaysDataDevelopmentDorsalEducational process of instructingEmbryoEmbryonic DevelopmentEndothelial CellsEndotheliumEngraftmentFlow CytometryFrictionGene ExpressionGeneticGenetically Engineered MouseGreen Fluorescent ProteinsHematologic NeoplasmsHematological DiseaseHematologyHematopoiesisHematopoieticHematopoietic Stem Cell TransplantationHematopoietic stem cellsInfectionInternationalLifeLiquid substanceLymphoidMarrowMechanical StressMechanicsMediatingMedical centerMentorsMentorshipMouse StrainsMusNaturePancytopeniaPathway interactionsPatientsPediatric HospitalsPhenotypePlayPopulationPost-Translational Protein ProcessingRegulationReporterResearchResearch DesignResearch InstituteRiskRoleSignal PathwaySignal TransductionSourceStagingStem cellsStressStretchingSyndromeTestingTransplantationUbiquitin CUmbilical Cord BloodVascular EndotheliumWorkbiomechanical engineeringcareerdefined contributionfluid flowgenetic manipulationgraft vs host diseasehemodynamicsinnovationinsightmedical schoolsmimicrymorphogensnotch proteinoncologyperipheral bloodpressureprogramspromoterresponseself-renewalshear stressstem cell biologystem cell therapysuccess
项目摘要
DESCRIPTION (provided by applicant): In the midgestation embryo, blood flow begins after initiation of the heartbeat and subjects vessel walls to viscous friction, pressure, and stretching. These biomechanical forces induce morphological change and activation of differentiation programs not only in endothelial cells but also in hematopoietic cells of the dorsal aorta. The first true hematopoietic stem cells (HSCs) that arise in this region, referred to as the para-aortic splanchnopleura (PSp), are responsible for life-long hematopoiesis of all blood lineages. We have found that fluid frictional force stimulates genetic pathways critical for definitive hematopoiesis and promotes long-term engraftment in adult recipient mice when applied to PSp cells (Nature 2009, 459:1131-1135 and unpublished data). A number of well-characterized pathways are activated by fluid flow in endothelial cells, yet little is known about the signaling pathways that determine hematopoietic fate. The studies proposed herein aim to identify the mechanosensitive genetic signals that are important for hematopoietic specification and expansion. Further, I will test the ability of soluble molecules to mimic the pro-hematopoietic effects of mechanical force. These studies are designed to define the role of biomechanical stress in regulation of hematopoietic potential and promise to inspire innovative approaches for the expansion of transplantable HSCs in culture. Three aims will test the hypothesis that hematopoietic stem cell emergence and expansion is triggered by biomechanically-responsive pathways that can be stimulated by biochemical and pharmacological compounds. Aim 1. Determine the cell surface phenotype(s) of cells that respond to biomechanical forces within the PSp, the embryonic region from which the first definitive HSCs arise. Aim 2. Define and interrogate genetic pathways activated by biomechanical stimulation in hematopoietic precursors from the PSp. Aim 3. Identify pharmacologic compounds and morphogens that promote specification or expansion of HSCs by mimicry of biomechanical forces. Dr. Pamela Wenzel, a postdoctoral research fellow at Children's Hospital Boston (CHB) has outlined a 5- year career plan that will augment and strengthen her background in developmental hematopoiesis and biomechanics. Under the mentorship of Dr. George Daley, a pioneer in the field of stem cell biology, she seeks to identify the genetic mechanisms that sense and respond to biomechanical forces at the earliest stages of definitive hematopoiesis. Dr. Wenzel will be mentored by an Advisory Committee of international leaders in hematopoiesis, biomechanical engineering, and hemodynamics, including Drs. Leonard Zon, Donald Ingber, and Guillermo Garcma-Cardeqa. Finally, the proposed research will be carried out in the Division of Hematology/Oncology at Children's Hospital Boston, the world's largest research institute at a pediatric medical center and the primary pediatric teaching affiliate of Harvard Medical School.
描述(由申请人提供):在妊娠中期胚胎中,心跳开始后血流开始,并使血管壁受到粘性摩擦、压力和拉伸。这些生物力学力不仅在内皮细胞中而且在背主动脉的造血细胞中诱导形态变化和分化程序的激活。第一个真正的造血干细胞(HSC)出现在这个区域,称为主动脉旁内脏胸膜(PSp),负责所有血统的终生造血。我们发现,当应用于 PSp 细胞时,流体摩擦力会刺激对确定造血至关重要的遗传途径,并促进成年受体小鼠的长期植入(Nature 2009, 459:1131-1135 和未发表的数据)。内皮细胞中的流体流动激活了许多已知的通路,但对于决定造血命运的信号通路知之甚少。本文提出的研究旨在识别对造血规范和扩张重要的机械敏感遗传信号。此外,我将测试可溶性分子模拟机械力的促造血作用的能力。这些研究旨在明确生物力学应激在造血潜力调节中的作用,并有望激发在培养物中扩增可移植造血干细胞的创新方法。 三个目标将检验以下假设:造血干细胞的出现和扩增是由生化和药理学化合物刺激的生物力学响应途径触发的。目标 1. 确定 PSp(第一个确定性 HSC 产生的胚胎区域)内对生物力学力做出反应的细胞的细胞表面表型。目标 2. 定义并询问 PSp 造血前体中生物力学刺激激活的遗传途径。目标 3. 鉴定通过模拟生物力学力促进 HSC 规范化或扩张的药理化合物和形态发生素。 波士顿儿童医院 (CHB) 的博士后研究员 Pamela Wenzel 博士概述了一个 5 年职业计划,该计划将增强和加强她在发育性造血和生物力学方面的背景。在干细胞生物学领域先驱 George Daley 博士的指导下,她试图找出在最终造血的最早阶段感知和响应生物力学力的遗传机制。 Wenzel 博士将接受由造血、生物力学工程和血液动力学领域的国际领导人组成的咨询委员会的指导,其中包括 Drs.伦纳德·宗、唐纳德·英贝尔和吉列尔莫·加克马-卡德卡。最后,拟议的研究将在波士顿儿童医院的血液学/肿瘤学部门进行,该医院是世界上最大的儿科医疗中心研究机构,也是哈佛医学院的主要儿科教学附属机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAMELA LYNN WENZEL其他文献
PAMELA LYNN WENZEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAMELA LYNN WENZEL', 18)}}的其他基金
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
10587300 - 财政年份:2018
- 资助金额:
$ 14.16万 - 项目类别:
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
9919750 - 财政年份:2018
- 资助金额:
$ 14.16万 - 项目类别:
Biomechanical Determinants of Hematopoietic Stem Cell Potential
造血干细胞潜力的生物力学决定因素
- 批准号:
10341105 - 财政年份:2018
- 资助金额:
$ 14.16万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8842626 - 财政年份:2011
- 资助金额:
$ 14.16万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8661178 - 财政年份:2011
- 资助金额:
$ 14.16万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8296611 - 财政年份:2011
- 资助金额:
$ 14.16万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8413091 - 财政年份:2011
- 资助金额:
$ 14.16万 - 项目类别:
Identification of biomechanical pathways that promote hematopoiesis
促进造血的生物力学途径的鉴定
- 批准号:
8164915 - 财政年份:2011
- 资助金额:
$ 14.16万 - 项目类别:
相似国自然基金
单核细胞产生S100A8/A9放大中性粒细胞炎症反应调控成人Still病发病及病情演变的机制研究
- 批准号:82373465
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
成人型弥漫性胶质瘤患者语言功能可塑性研究
- 批准号:82303926
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
MRI融合多组学特征量化高级别成人型弥漫性脑胶质瘤免疫微环境并预测术后复发风险的研究
- 批准号:82302160
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SERPINF1/SRSF6/B7-H3信号通路在成人B-ALL免疫逃逸中的作用及机制研究
- 批准号:82300208
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于动态信息的深度学习辅助设计成人脊柱畸形手术方案的研究
- 批准号:82372499
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
- 批准号:
10750765 - 财政年份:2024
- 资助金额:
$ 14.16万 - 项目类别:
Functions of the rete ovarii in ovary development, adult homeostasis, and female reproductive longevity
卵巢网在卵巢发育、成人体内平衡和女性生殖寿命中的功能
- 批准号:
10828038 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Exploring brain perivascular fibroblasts in health and cerebral amyloid angiopathy
探索大脑血管周围成纤维细胞在健康和脑淀粉样血管病中的作用
- 批准号:
10739076 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Defining the Role of Retinal Microglia and Infiltrating Monocytes on Photoreceptor Cell Death in Retinal Detachment
定义视网膜小胶质细胞和浸润单核细胞对视网膜脱离感光细胞死亡的作用
- 批准号:
10644354 - 财政年份:2023
- 资助金额:
$ 14.16万 - 项目类别:
Defining the role of respiratory gland patterning in rhinosinusitis
定义呼吸腺模式在鼻窦炎中的作用
- 批准号:
10680552 - 财政年份:2022
- 资助金额:
$ 14.16万 - 项目类别: