Optimal neural and behavioral markers for learning to learn during infancy
婴儿期学习的最佳神经和行为标记
基本信息
- 批准号:8527524
- 负责人:
- 金额:$ 4.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2015-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAnimalsAreaArtificial IntelligenceAttentionAutomobile DrivingBehaviorBehavioralBehavioral MechanismsBuffersChildCognitiveCognitive ScienceCommunitiesComplexComputer SimulationComputersComputing MethodologiesCuesDataDevelopmentDimensionsEducationEnvironmentEventEyeEye MovementsFeedbackFellowshipFutureGoalsHeadHumanInfantLeadLearningLifeLightLinkMachine LearningMeasuresMediatingMethodsModelingNear-Infrared SpectroscopyPatternPerceptual learningPerformancePopulationProcessPsychological TransferPsychological reinforcementPsychologyRegimenResearchResearch PersonnelResearch TrainingScalp structureScienceSocial InteractionSolidSolutionsTechniquesTestingTimeTrainingTraining ProgramsVisionWorkage groupbasecareerdata miningdistractionimprovedinfancyinnovationlearned behaviorneuroimagingprogramsrelating to nervous systemresearch studyselective attentiontool
项目摘要
DESCRIPTION (provided by applicant): Human infants are confronted with a complex world that is filled with ambiguity. Not only are many different features and dimensions of information present in the environment, but these cues are often unrelated to any reinforcement or feedback. There are two solutions to learning in a complex and ambiguous environment: (a) innate constraints on the cues selected for processing (bottom-up), or (b) rapid learning-to-learn mechanisms that assess cues (top-down). Learned top-down mechanisms of information selection may be tuned more to specific task demands, and thus more useful for learning. Given how much infants have to learn over the first two years of life, it is not efficient to use mainly slow but precise (top-down) search methods. My hypothesis is that the developmental progression of learning how to learn requires using bottom-up information in a systematic way, while creating top-down buffers against bottom- up distraction. The experiments in the research plan will test this hypothesis, with each experiment evaluating an additional level of learning. Sophisticated behavioral techniques (i.e., both table- and head-mounted eye- tracking) and complementary state-of-the-art neuroimaging methods (i.e., functional near-infrared spectroscopy [fNIRS], measuring spatially-localized neural activation via non-invasive light probes on the scalp), as well as data mining tools applied to infant eye movement data, will examine how infants learn to learn from both computer displays and in naturalistic settings. There are four specific aims in this research program: 1) to establish a new, robust measure of learning with both behavioral and neural measures, 2) to investigate how attentional deployment can optimally improve learning, 3) to apply the learning paradigm to the natural environment, and 4) to conduct microanalyses on and to develop computational models of infant eye movements. The training component focuses on learning to use two state-of-the-art methods in infancy research (a head-mounted eye-tracker and fNIRS), and learning to use innovative data mining tools to analyze patterns of infant eye movements to link looking behavior to cognitive abilities. This training program is essential for the applicant's career goal of identifying the optimal strategies for learning to learn that will lead to training regimens for populations with learning difficulties. The findings will benefit researchers within the larger community of developmental science, as well as artificial intelligence, perceptual learning, education, animal learning, machine learning, and evolutionary psychology. This work will contribute to a foundational understanding of the dynamics of selective attention and learning in typical development, which in turn would inform populations with learning difficulties.
描述(由申请人提供):人类婴儿面临着一个充满歧义的复杂世界。环境中不仅存在许多不同的信息特征和维度,而且这些线索通常与任何强化或反馈无关。在复杂和模糊的环境中学习有两种解决方案:(a)对选择用于处理的线索的固有限制(自下而上),或(b)评估线索的快速学习机制(自上而下)。学习到的自上而下的信息选择机制可以更多地适应特定的任务需求,因此对学习更有用。考虑到婴儿在生命的头两年必须学习多少东西,主要使用缓慢但精确(自上而下)的搜索方法效率不高。我的假设是,学习如何学习的发展进程需要以系统的方式使用自下而上的信息,同时创建自上而下的缓冲以防止自下而上的干扰。研究计划中的实验将检验这一假设,每个实验都会评估额外的学习水平。复杂的行为技术(即台式和头戴式眼球追踪)和补充的最先进的神经成像方法(即功能性近红外光谱 [fNIRS],通过非侵入性测量空间局部神经激活)头皮上的光探针)以及应用于婴儿眼球运动数据的数据挖掘工具,将研究婴儿如何从计算机显示器和自然环境中学习。 该研究计划有四个具体目标:1)通过行为和神经测量建立一种新的、稳健的学习测量方法,2)研究注意力部署如何最佳地改善学习,3)将学习范式应用到自然环境中。环境,4) 对婴儿眼球运动进行微观分析并开发计算模型。培训部分的重点是学习在婴儿研究中使用两种最先进的方法(头戴式眼球追踪器和 fNIRS),并学习使用创新的数据挖掘工具来分析婴儿眼球运动模式以将观看与行为对认知能力的影响。该培训计划对于申请人的职业目标至关重要,即确定学习学习的最佳策略,从而为有学习困难的人群制定培训方案。 这些发现将使发展科学以及人工智能、感知学习、教育、动物学习、机器学习和进化心理学领域的研究人员受益。这项工作将有助于对典型发展中选择性注意和学习动态的基本理解,从而为有学习困难的人群提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rachel Wu其他文献
Rachel Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rachel Wu', 18)}}的其他基金
Optimal neural and behavioral markers for learning to learn during infancy
婴儿期学习的最佳神经和行为标记
- 批准号:
8708921 - 财政年份:2012
- 资助金额:
$ 4.92万 - 项目类别:
Optimal neural and behavioral markers for learning to learn during infancy
婴儿期学习的最佳神经和行为标记
- 批准号:
8309652 - 财政年份:2012
- 资助金额:
$ 4.92万 - 项目类别:
相似国自然基金
臂旁核区域损伤致长时程“昏迷样”动物模型建立及神经机制研究
- 批准号:81901068
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
三江源大型野生食草动物对区域草畜平衡状态影响及管控机制研究
- 批准号:41971276
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
转录因子Msx1与哺乳动物上腭发育的前-后区域化
- 批准号:31771593
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
家鸽对城市区域大气重金属污染物的暴露响应研究
- 批准号:41701574
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Anti-flavivirus B cell response analysis to aid vaccine design
抗黄病毒 B 细胞反应分析有助于疫苗设计
- 批准号:
10636329 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
The Role of Glycosyl Ceramides in Heart Failure and Recovery
糖基神经酰胺在心力衰竭和恢复中的作用
- 批准号:
10644874 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
A Neuropeptidergic Neural Network Integrates Taste with Internal State to Modulate Feeding
神经肽能神经网络将味觉与内部状态相结合来调节进食
- 批准号:
10734258 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Transovarial transmission of yersinia pestis in fleas
跳蚤中鼠疫耶尔森氏菌的跨卵巢传播
- 批准号:
10727534 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别:
Investigating the role of CSF production and circulation in aging and Alzheimer's disease
研究脑脊液产生和循环在衰老和阿尔茨海默病中的作用
- 批准号:
10717111 - 财政年份:2023
- 资助金额:
$ 4.92万 - 项目类别: