THE ROLE OF COMPLEX 1 IN MITOCHONDRIAL DYSFUNCTION & FREE RADICAL PROD IN TYPE 1
复合物 1 在线粒体功能障碍中的作用
基本信息
- 批准号:8167975
- 负责人:
- 金额:$ 7.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2011-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBirthCardiacCitric Acid CycleComplexComputer Retrieval of Information on Scientific Projects DatabaseDefectDiabetes MellitusDiabetic mouseDiseaseDisease ProgressionElectron TransportEventFatty AcidsFree RadicalsFundingFutureGlucoseGoalsGrantHeartHeart DiseasesHeart MitochondriaHeart failureImpairmentInstitutionInsulin-Dependent Diabetes MellitusInterventionMetabolic PathwayMitochondriaMolecularMorbidity - disease rateMusOrganellesOxidative StressProcessProductionPyruvatePyruvatesResearchResearch PersonnelResourcesRoleSourceStagingTimeTissuesUnited States National Institutes of Healthantioxidant therapybasediabeticdiabetic cardiomyopathyimprovedinsightmitochondrial dysfunctionmortalitypreventtherapeutic target
项目摘要
This subproject is one of many research subprojects utilizing the
resources provided by a Center grant funded by NIH/NCRR. The subproject and
investigator (PI) may have received primary funding from another NIH source,
and thus could be represented in other CRISP entries. The institution listed is
for the Center, which is not necessarily the institution for the investigator.
The Role of Complex I in Mitochondrial Dysfunction and Free Radical Production in Type 1 Diabetes.
A leading cause of morbidity and mortality induced by diabetes is heart failure. Diabetes leads to a specific form of heart disease, termed diabetic cardiomyopathy, the causes of which are not completely understood. However, it is known that there are deficiencies in the processes that produce energy for cardiac tissue. These processes occur in distinct subcellular organelles called mitochondria. Loss of mitochondrial function leads to an increase in free radical production, which in turn generates an oxidative stres. The underlying mechanisms of mitochondrial dysfunction, and the role of free radicals in perpetuating diabetic cardiomyopathy are not well understood. The goal of the present project is to assess how mitochondrial function changes as a progression of type 1 diabetes using a genetically modified mouse that develops the disease at birth.
Heart mitochondria from two-month-old mice (control and diabetic) are currently being evaluated. While this project is in early stages, the results are quite clear. Specifically, we have found that diabetic mice show no overt decrease in electron transport chain activity (which underlies the fundamental mechanism by which mitochondria produce energy). Furthermore, there is not a diabetes-induced increase in mitochondrial free radical production at this time point. Nevertheless, we have found clear differences in diabetic mitochondria as compared to controls. Specifically, mitochondria from diabetic mice have staggering limitations in the fuel sources they are able to utilize for energy production. They will only produce energy effectively using fatty acids, and have severe deficits in the ability to utilize pyruvate (an end product of glucose breakdown). Provocatively, the diabetic mitochondria also have severe deficits in the ability to produce energy using Krebs cycle intermediates (a central metabolic pathway carried out in the mitochondria). The significance of these findings will become clearer as the study progresses, but indicate significant impairments from an early stage.
We anticipate future results of this study to provide important information regarding the molecular basis of the disease progression of type 1 diabetes. Specifically, this study will define the molecular aspects of mitochondrial energy production that are affected by the disease. In turn, this information will be used to determine the cause of increased free radical production and oxidative stress. This will address very fundamental questions. Specifically, how does mitochondrial dysfunction contribute to diabetic cardiomyopathy? Is mitochondrial dysfunction in the heart an early event in the progression of the disease? And, importantly, how can these defects be prevented? Results of this study will provide information about possible therapeutic targets to minimize the onset of diabetic cardiomyopathy and provide insight into improving pharmacological intervention using antioxidant therapy.
该子项目是利用该技术的众多研究子项目之一
资源由 NIH/NCRR 资助的中心拨款提供。子项目及
研究者 (PI) 可能已从 NIH 的另一个来源获得主要资金,
因此可以在其他 CRISP 条目中表示。列出的机构是
对于中心来说,它不一定是研究者的机构。
复合物 I 在 1 型糖尿病线粒体功能障碍和自由基产生中的作用。
糖尿病引起的发病和死亡的主要原因是心力衰竭。 糖尿病会导致一种特殊形式的心脏病,称为糖尿病心肌病,其原因尚不完全清楚。 然而,众所周知,为心脏组织产生能量的过程存在缺陷。 这些过程发生在称为线粒体的不同亚细胞细胞器中。 线粒体功能的丧失会导致自由基产生增加,进而产生氧化应激。线粒体功能障碍的潜在机制以及自由基在糖尿病性心肌病持续存在中的作用尚不清楚。 本项目的目标是使用出生时患病的转基因小鼠来评估随着 1 型糖尿病的进展,线粒体功能如何变化。
目前正在评估两个月大小鼠(对照组和糖尿病小鼠)的心脏线粒体。 虽然该项目还处于早期阶段,但结果非常明显。 具体来说,我们发现糖尿病小鼠的电子传递链活性(这是线粒体产生能量的基本机制的基础)没有明显下降。 此外,此时并没有糖尿病引起的线粒体自由基产生增加。 尽管如此,我们发现糖尿病线粒体与对照组相比存在明显差异。 具体来说,糖尿病小鼠的线粒体在用于产生能量的燃料来源方面具有惊人的局限性。 它们只能利用脂肪酸有效地产生能量,并且在利用丙酮酸(葡萄糖分解的最终产物)的能力方面存在严重缺陷。 令人惊讶的是,糖尿病线粒体在利用克雷布斯循环中间体(线粒体中进行的中心代谢途径)产生能量的能力上也存在严重缺陷。 随着研究的进展,这些发现的重要性将变得更加清晰,但从早期阶段就表明存在重大损害。
我们预计这项研究的未来结果将提供有关 1 型糖尿病疾病进展的分子基础的重要信息。 具体来说,这项研究将定义受疾病影响的线粒体能量产生的分子方面。 反过来,这些信息将用于确定自由基产生和氧化应激增加的原因。这将解决非常基本的问题。 具体来说,线粒体功能障碍如何导致糖尿病心肌病? 心脏线粒体功能障碍是疾病进展的早期事件吗? 重要的是,如何防止这些缺陷? 这项研究的结果将提供有关可能的治疗目标的信息,以尽量减少糖尿病心肌病的发病,并为使用抗氧化疗法改善药物干预提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kenneth M Humphries其他文献
Kenneth M Humphries的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kenneth M Humphries', 18)}}的其他基金
Increasing glycolysis in the diabetic heart is cardioprotective and improves glucose tolerance
糖尿病心脏中糖酵解的增加具有心脏保护作用并改善葡萄糖耐量
- 批准号:
10676962 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Increasing glycolysis in the diabetic heart is cardioprotective and improves glucose tolerance
糖尿病心脏中糖酵解的增加具有心脏保护作用并改善葡萄糖耐量
- 批准号:
10521773 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Investigating the role of SIRT3 in metabolic flexibility and proteostasis in the aging heart
研究 SIRT3 在衰老心脏代谢灵活性和蛋白质稳态中的作用
- 批准号:
10625412 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Investigating the role of SIRT3 in metabolic flexibility and proteostasis in the aging heart
研究 SIRT3 在衰老心脏代谢灵活性和蛋白质稳态中的作用
- 批准号:
10453002 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Increasing glycolysis in the diabetic heart is cardioprotective and improves glucose tolerance
糖尿病心脏中糖酵解的增加具有心脏保护作用并改善葡萄糖耐量
- 批准号:
10521773 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
Increasing glycolysis in the diabetic heart is cardioprotective and improves glucose tolerance
糖尿病心脏中糖酵解的增加具有心脏保护作用并改善葡萄糖耐量
- 批准号:
10676962 - 财政年份:2022
- 资助金额:
$ 7.31万 - 项目类别:
PKA Signaling and Metabolic Inflexibility in the Diabetic Heart
糖尿病心脏中的 PKA 信号传导和代谢不灵活
- 批准号:
9306179 - 财政年份:2016
- 资助金额:
$ 7.31万 - 项目类别:
MITOCHONDRIAL DYSFUNCTION IN DIABETIC CARDIOMYOPATHY
糖尿病心肌病中的线粒体功能障碍
- 批准号:
8364979 - 财政年份:2011
- 资助金额:
$ 7.31万 - 项目类别:
相似国自然基金
孕期夜光暴露对新生儿出生体重的影响及其通过褪黑素调节胎盘mTOR信号通路的机制研究
- 批准号:82373536
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于双生子出生队列研究生命早期有机磷阻燃剂暴露对婴幼儿肠道菌群及神经发育的影响
- 批准号:82304100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于出生队列研究孕期铁及脂质代谢标志物对妊娠糖尿病的影响及早期预测价值
- 批准号:82304161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GLS2调控的谷氨酰胺代谢影响儿童非酒精性脂肪肝发病风险的出生队列及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
孕期对乙酰氨基酚暴露对婴幼儿神经发育的影响及潜在机制:基于出生队列的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 7.31万 - 项目类别:
Neurodevelopment of executive function, appetite regulation, and obesity in children and adolescents
儿童和青少年执行功能、食欲调节和肥胖的神经发育
- 批准号:
10643633 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别:
The Effects of the Medicaid Continuous Coverage Requirement during the Public Health Emergency on Postpartum Coverage and Maternal and Infant Care after Childbirth
突发公共卫生事件期间医疗补助持续覆盖要求对产后覆盖和产后母婴护理的影响
- 批准号:
10643130 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别:
The role of dendritic cells in heart valve extracellular matrix remodeling, homeostasis, and disease
树突状细胞在心脏瓣膜细胞外基质重塑、稳态和疾病中的作用
- 批准号:
10672638 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别:
Development of a Therapeutic Device to Improve Speech Sound Differentiation in Preterm Infants
开发一种改善早产儿语音分化的治疗装置
- 批准号:
10697501 - 财政年份:2023
- 资助金额:
$ 7.31万 - 项目类别: