Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
基本信息
- 批准号:8598272
- 负责人:
- 金额:$ 24.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-01-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAdverse effectsAffectAgonistArrhythmiaBiologicalBiological AssayCalciumCalcium SignalingCardiacCardiac MyocytesCardiovascular systemCell ProliferationCell SeparationCellsClinical TrialsCoculture TechniquesContractsCouplingDefectDevelopmentDiseaseDrug ExposureElementsFailureFamilyFunctional disorderFutureGene ExpressionGenerationsGenesGeneticGoalsHeartHeart AtriumHeart DiseasesHumanImageIn VitroInduced MutationIsoproterenolL-type calcium channel alpha(1C)LeadLibrariesLong QT SyndromeMethodsMissense MutationModelingMolecularMotionMotivationMusMuscle CellsMuscle ContractionMutationMyocardiumNodalPatent Ductus ArteriosusPatent Foramen OvalePatientsPharmaceutical PreparationsPharmacologic SubstancePhenotypePhysiologicalPlayPreclinical Drug EvaluationPropertyRare DiseasesRelative (related person)ReporterReportingReproducibilityReverse Transcriptase Polymerase Chain ReactionRiskRoleScientistSignal TransductionSkinStimulusStressStructureSudden DeathSystemTechniquesTestingTetralogy of FallotTimothy syndromeUnited StatesVentricularVentricular FibrillationVentricular Septal DefectsVentricular Tachycardiaabstractingbasecardiogenesiscareerdesigndrug testingfluorescence microscopeheart functionhigh throughput screeningimmunocytochemistryinduced pluripotent stem cellinnovationion channel blockernovelpatch clamppreventresearch studyresponseroscovitinescreeningsmall molecule librariesvoltage
项目摘要
Abstract: Prolonged QT interval, the electrical manifestation of repolarization in ventricular myocytes, is a
major cause of cardiac arrhythmia and sudden death. Long QT syndrome (LQTS) can have a genetic basis or
be induced by drug exposure or physiological stress. Drug-induced LQTS is a side effect of many drugs that
have approved and is a common cause of drug failure in clinical trials. Though many of the genes are reported
to cause LQTS, the mechanisms underlying the disease in humans are incompletely understood.
My career goal is to develop novel systems to uncover molecular and cellular mechanisms underlying
human cardiac arrhythmia and to find lead compounds for pharmaceutical applications to treat arrhythmia. My
personal motivation for this study is that I have a grandmother who had suffered severe arrhythmia and then
died last year. As a professional scientist I'd like to contribute to cardiovascular fields to help as many patients
suffering arrhythmia as possible. Key elements of my career goal are 1) to develop human models of cardiac
arrhythmia to examine how cardiac arrhythmia occurs in human hearts; 2) to develop screen methods using
human cells to find new lead compounds that have better effects but less side effects than present ones.
To accomplish this goal, I have focused calcium signaling in heart function and development since
undergraduate studies. This is because depletion of calcium related molecules in mice induced lethal cardiac
dysfunction in most cases and many mutations in the molecules are reported to be associated with human
cardiac diseases including LQTS. Here I propose to study a missense mutation in the L-type Ca2+ channel,
CaV1.2, which causes LQTS and lethal arrhythmia in patients with Timothy syndrome (TS) in order to explore
the effect of the TS mutation on the electrical activity and contraction of human cardiomyocytes (CMs). While
TS is a rare disorder, CaV1.2 channels play important roles in generation of action potential and in excitation-
contraction coupling for heart muscles. Therefore, human model of TS would be a useful platform to study
mechanisms of arrhythmia and to test drugs for future treatment of cardiac arrhythmia.
In preliminary studies, to develop human models of TS, I reprogrammed human skin cells from two TS
patients to generate induced pluripotent stem cells (iPSCs) and differentiated these cells into CMs.
Electrophysiological recording and Ca2+ imaging studies of these cells revealed irregular contraction, excess
Ca2+ influx, prolonged action potentials, delayed afterdepolarizations and irregular Ca2+ signaling. Using these
cells I found that roscovitine restored the electrical and Ca2+ signaling properties of TS CMs.
The approach using iPSC-derived CMs provides new opportunities for studying the molecular and
cellular mechanisms of cardiac arrhythmias in humans and for developing new drugs to treat these diseases.
However, it is still difficult to screen a library of chemical compounds to treat lethal arrhythmia using human
iPSC-derived CMs because electrophysiological recordings are not easily used for developing medium-
throughput screen to find lead compounds to treat cardiac disease. Therefore, the goal of this project is to
develop and validate an iPSC-based screening method that can be used to identify therapies for
cardiac arrhythmia. This goal encompasses the approaches as follow:
1) Further characterization of phenotypes in TS cardiomyocytes: Using a variety of assays I will
ask how TS mutation induce lethal ventricular tachycardia and whether TS mutation alters proliferation,
differentiation, gene expression, contractility and ultra-structures in human CMs to uncover further molecular
and cellular mechanisms that underlie cardiac arrhythmia of TS.
2) Direct screen of drugs to rescue TS phenotypes: Several families of ion channel blockers are
used clinically as well as ¿-blockers to prevent lethal cardiac arrhythmia. However, it is not clear that these
blockers can rescue the cardiac phenotypes observed in TS CMs. I will test these blockers for their ability to
restore normal Ca2+ responses and reduce irregular contraction in TS CMs. In addition, I will also test
derivates of roscovitine, which are tested to rescue the cellular phenotypes of TS.
3) Development of screen methods to find lead compounds: To develop medium throughput
screen systems for a library of chemical compounds to rescue the cardiac phenotypes of TS, I will test two
different methods based on relative motion and calcium response in TS CMs using automated fluorescent
microscopes. To validate the systems, I will used ¿-agonists and roscovitine, which have been tested on TS
CMs, to optimize experimental conditions for the methods to assess the reproducibility as determined by Z'
value. Finally, I will conduct a pilot screen in TS CMs using LOPAC 1280 compounds that have been used in
human, which is available through Stanford high-throughput screening facility.
These approaches using human cardiac model of TS would be very unique and innovative to understand the
mechanisms underlying human cardiac arrhythmia. The proposed systems to screen a library of compounds
to rescue TS phenotypes will provide a platform to find novel lead compounds that would be clinically useful for
the treatment of not only TS but also other cardiac arrhythmias.
【摘要】:QT间期延长是心室肌细胞复极的电学表现。
心律失常和猝死的主要原因可能有遗传基础或。
药物引起的 LQTS 是许多药物的副作用。
尽管已经报道了许多基因,但它是临床试验中药物失败的常见原因。
导致 LQTS 的人类疾病机制尚不完全清楚。
我的职业目标是开发新的系统来揭示潜在的分子和细胞机制
人类心律失常并寻找用于治疗心律失常的药物应用的先导化合物。
这项研究的个人动机是我的祖母患有严重的心律失常,然后
作为一名专业科学家,我想为心血管领域做出贡献,以帮助尽可能多的患者。
我职业目标的关键要素是 1)开发人体心脏模型。
心律失常 检查人类心脏中心律失常是如何发生的 2) 开发筛查方法;
人类细胞寻找新的先导化合物,其效果比现有化合物更好,但副作用更少。
为了实现这一目标,自那时以来,我一直专注于心脏功能和发育中的钙信号传导
这是因为小鼠体内钙相关分子的消耗会导致致命的心脏损伤。
据报道,大多数情况下功能障碍和分子中的许多突变与人类有关
包括 LQTS 在内的心脏病,我建议研究 L 型 Ca2+ 通道中的错义突变,
CaV1.2,引起蒂莫西综合征(TS)患者的 LQTS 和致死性心律失常,以探索
TS 突变对人类心肌细胞 (CM) 的电活动和收缩的影响。
TS 是一种罕见疾病,CaV1.2 通道在动作电位的产生和兴奋中发挥重要作用
因此,TS 的人体模型将是一个有用的研究平台。
心律失常的机制并测试未来治疗心律失常的药物。
在初步研究中,为了开发 TS 的人类模型,我对两个 TS 的人类皮肤细胞进行了重新编程
患者产生诱导多能干细胞(iPSC)并将这些细胞分化为 CM。
这些细胞的电生理记录和 Ca2+ 成像研究揭示了不规则收缩、过度收缩
Ca2+ 流入、动作电位延长、后除极延迟和不规则 Ca2+ 信号传导。
我发现 roscovitine 恢复了 TS CM 的电学和 Ca2+ 信号传导特性。
使用 iPSC 衍生的 CM 的方法为研究分子和
人类心律失常的细胞机制以及开发治疗这些疾病的新药。
然而,筛选用于人类治疗致命性心律失常的化合物库仍然很困难。
iPSC 衍生的 CM 因为电生理记录不易用于开发培养基
因此,该项目的目标是寻找治疗心脏病的先导化合物。
开发并验证基于 iPSC 的筛选方法,可用于识别治疗方法
该目标包括以下方法:
1) TS 心肌细胞表型的进一步表征:使用各种测定法,我将
询问 TS 突变如何诱发致命性室性心动过速以及 TS 突变是否会改变增殖,
人类 CM 的分化、基因表达、收缩性和超微结构,以揭示进一步的分子
以及 TS 心律失常的细胞机制。
2) 直接筛选挽救 TS 表型的药物:离子通道阻滞剂的几个家族
临床上使用以及 ¿ β受体阻滞剂可预防致命性心律失常,但尚不清楚这些药物是否有效。
阻滞剂可以挽救 TS CM 中观察到的心脏表型,我将测试这些阻滞剂的能力。
恢复正常的 Ca2+ 反应并减少 TS CM 的不规则收缩 此外,我还将进行测试。
roscovitine 的衍生物,经测试可挽救 TS 的细胞表型。
3) 开发寻找先导化合物的筛选方法:开发介质通量
为了挽救 TS 心脏表型的化合物库的筛选系统,我将测试两个
使用自动荧光技术基于 TS CM 中的相对运动和钙反应的不同方法
为了验证系统,我将使用 ¿ -激动剂和roscovitine,已在TS上进行了测试
CM,优化方法的实验条件,以评估由 Z' 确定的再现性
最后,我将使用已在 TS CM 中使用的 LOPAC 1280 化合物进行试点筛选。
人类,可通过斯坦福大学高通量筛选设施获得。
这些使用 TS 人类心脏模型的方法对于理解 TS 来说将是非常独特和创新的。
人类心律失常的潜在机制。所提出的筛选化合物库的系统。
拯救 TS 表型将提供一个平台来寻找新的先导化合物,这些化合物在临床上有用
不仅可以治疗 TS,还可以治疗其他心律失常。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Masayuki Yazawa其他文献
Masayuki Yazawa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Masayuki Yazawa', 18)}}的其他基金
Novel Therapeutics for Timothy Syndrome and Related Cardiac Channelopathy
蒂莫西综合征和相关心脏通道病变的新疗法
- 批准号:
10911506 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
- 批准号:
10199772 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Molecular mechanisms underlying cardiac sodium channelopathy
心脏钠离子通道病的分子机制
- 批准号:
9974589 - 财政年份:2017
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8399063 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8811467 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8626438 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
Model of Timothy Syndrome to Screen Drugs with Induced Pluripotent Stem Cells
蒂莫西综合征模型用诱导多能干细胞筛选药物
- 批准号:
8226405 - 财政年份:2012
- 资助金额:
$ 24.9万 - 项目类别:
相似国自然基金
儿童药品不良反应主动监测中时序处理策略的方法学研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于真实世界医疗大数据的中西药联用严重不良反应监测与评价关键方法研究
- 批准号:82274368
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于隐狄利克雷分配模型的心血管系统药物不良反应主动监测研究
- 批准号:82273739
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于真实世界数据的创新药品上市后严重罕见不良反应评价关键方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
OR10G7错义突变激活NLRP3炎症小体致伊马替尼严重皮肤不良反应的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Hypoxia-Mediated Disturbances in Cerebral Maturation in a Fetal Ovine Model of Maternal Sleep Apnea
母体睡眠呼吸暂停胎羊模型中缺氧介导的大脑成熟障碍的机制
- 批准号:
10608612 - 财政年份:2023
- 资助金额:
$ 24.9万 - 项目类别:
Systematic identification of cardiotoxic e-cigarette flavorants
系统鉴定心脏毒性电子烟香料
- 批准号:
10610732 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Engineered Matrices with Electrical and Chemical Stimulation for Peripheral Nerve Repair
用于周围神经修复的具有电和化学刺激的工程基质
- 批准号:
10592729 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Systematic identification of cardiotoxic e-cigarette flavorants
系统鉴定心脏毒性电子烟香料
- 批准号:
10451184 - 财政年份:2022
- 资助金额:
$ 24.9万 - 项目类别:
Regulation of neuronal activity in the paraventricular thalamus by chronic morphine
慢性吗啡对室旁丘脑神经元活动的调节
- 批准号:
10313987 - 财政年份:2021
- 资助金额:
$ 24.9万 - 项目类别: