A Frequency-multiplexed flow cytometer for high throughput screening and drug discovery

用于高通量筛选和药物发现的频率复用流式细胞仪

基本信息

  • 批准号:
    8970595
  • 负责人:
  • 金额:
    $ 19.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2017-07-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION: Drug discovery is an extremely lengthy and expensive process. On average, drugs today cost more than $5 billion to develop, and take more than a decade to reach the market. Most drugs today are discovered using high throughput screening, in which millions of trial compounds are assayed against cells to determine if they interact with a disease target. This is typically performed using well-level screening techniques, such as fluorescence, chemiluminescence, and optical absorbance. While these techniques are high throughput, they lack the ability to interrogate wells at the single-cell level, which provides a much more comprehensive picture of the drug-cell interaction than population-averaged measurements. Flow cytometry is a well established and widely used technique used in most areas of cell biology that provides multi-parameter, cell-level information by measuring optical scatter and fluorescence information from individual cells in flow at a high throughput (~10,000 cells/second). While this cellular throughput is high, the sample throughput of flow cytometers is relatively low, when compared to fluorescence plate readers, for example, due to the serial sample handling approach typically employed by modern flow cytometers. If the sample throughput could be increased to appropriate levels, it would enable multi-parameter drug screening assays using flow cytometry, which would obviate certain further downstream assays in the drug discovery workflow (e.g. cytotoxicity assays). This improvement would increase the efficiency of drug discovery by better elucidating the complex drug-cell interactions, reducing the overall cost and time-to-market of new drugs. We propose here to develop a parallel flow cytometer system using a combination of two technologies developed in the laboratories of the co-PI's. Fluorescence Imaging using Radiofrequency-tagged Emission (FIRE) is a high-speed optical technique that enables a single photomultiplier tube detector to measure fluorescence or scatter from multiple points on a sample using radiofrequency-domain multiplexing. We will use a modified FIRE optical system to probe fluorescence and scatter from cells flowing in multiple parallel intertially focused streams, created by an Inertial Microfluidic Parallel Stream (IMPS) microfluidic chip. IMPS chips create ordered streams of cells using inertial flow field shaping without the complexity of multiple sheath fluids to direct cells, allowing high numerical aperture optics to detect fluorescence from all streams simultaneously. Combining these techniques, we will develop an optical and fluidic system capable of measuring multi-color flow cytometry data from 10 samples of cells at the same time. This order of magnitude increase in the sample throughput will transform the utility of flow cytometry in drug discovery, ultimately enabling its widespread use in high throughput screening (>100,000 wells/day). We will characterize the system (precision, linearity, sensitivity) using standard protocols, and perform a basic two-color apoptosis time course assay and compare our results in this assay to those obtained using a conventional commercial flow cytometer.
 描述:当今的药物花费了超过50亿美元的开发,并且在市场上花费了更多的汉,而是针对细胞来确定它们是否与疾病靶标相互作用。单细胞水平的Nterrogate井,该井提供了流式相互作用平均相互作用的更加稳定图片。通过测量流量高的单个细胞的散射和荧光的水平信息。串行样品处理由现代流式细胞仪施加到适当的水平。减少 总的成本和新药的成本和时间。高速光学的光电层次能够使用射频式多域多路复用来测量荧光将鞘液塑造为导向细胞L流同时结合技术,我们将开发一种能够测量来自10个LS样本的多色流式细胞仪数据的光学和流体系统。牙齿将在药物发现中转化流式细胞仪的效用,最终使其在高含量筛选中广泛使用(> 100,000井/天)。 Tirse课程的课程将我们的刺激与使用转换通信流式赛仪获得的方法进行比较。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dino Di Carlo其他文献

Dino Di Carlo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dino Di Carlo', 18)}}的其他基金

Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
  • 批准号:
    10411907
  • 财政年份:
    2021
  • 资助金额:
    $ 19.25万
  • 项目类别:
Enhancing the potency of mesenchymal stem cell therapies for kidney diseases using lab-on-a-particle technology
使用粒子实验室技术增强间充质干细胞治疗肾脏疾病的效力
  • 批准号:
    10373803
  • 财政年份:
    2021
  • 资助金额:
    $ 19.25万
  • 项目类别:
Lab on a particle technology for functional screening of therapeutic cells
用于治疗细胞功能筛选的粒子技术实验室
  • 批准号:
    10272940
  • 财政年份:
    2021
  • 资助金额:
    $ 19.25万
  • 项目类别:
Hydrogel nanovial technology for single-cell sorting based on extracellular vesicle production
基于细胞外囊泡产生的单细胞分选水凝胶纳米瓶技术
  • 批准号:
    10193200
  • 财政年份:
    2021
  • 资助金额:
    $ 19.25万
  • 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
  • 批准号:
    10213026
  • 财政年份:
    2020
  • 资助金额:
    $ 19.25万
  • 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
  • 批准号:
    10440285
  • 财政年份:
    2020
  • 资助金额:
    $ 19.25万
  • 项目类别:
Caltech/UCLA Individualized Theranostic Engineering to Advance Metabolic System (iTEAM)
加州理工学院/加州大学洛杉矶分校个性化治疗诊断工程促进代谢系统 (iTEAM)
  • 批准号:
    10683974
  • 财政年份:
    2020
  • 资助金额:
    $ 19.25万
  • 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
  • 批准号:
    10599275
  • 财政年份:
    2019
  • 资助金额:
    $ 19.25万
  • 项目类别:
Training the next generation of leaders in biomedical engineering design
培训下一代生物医学工程设计领导者
  • 批准号:
    10428473
  • 财政年份:
    2019
  • 资助金额:
    $ 19.25万
  • 项目类别:
Engineering Yeast towards High Titer Production of Monoterpene Indole Alkaloid Natural Products
工程酵母用于高滴度生产单萜吲哚生物碱天然产物
  • 批准号:
    10735587
  • 财政年份:
    2018
  • 资助金额:
    $ 19.25万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Neural mechanisms regulating glucose homeostasis
调节葡萄糖稳态的神经机制
  • 批准号:
    10634249
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
1/2 – Pediatric Prehospital Airway Resuscitation Trial
1/2 — 儿科院前气道复苏试验
  • 批准号:
    10738581
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
SORDINO-fMRI for mouse brain applications
用于小鼠大脑应用的 SORDINO-fMRI
  • 批准号:
    10737308
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
Continuous Glucose Monitoring in Dialysis Patients to Overcome Dysglycemia Trial (CONDOR TRIAL)
透析患者连续血糖监测克服血糖异常试验(CONDOR TRIAL)
  • 批准号:
    10587470
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
A Randomized Clinical Trial of the Safety and FeasibiLity of Metformin as a Treatment for sepsis induced AKI (LiMiT AKI)
二甲双胍治疗脓毒症引起的 AKI (LiMiT AKI) 的安全性和可行性的随机临床试验
  • 批准号:
    10656829
  • 财政年份:
    2023
  • 资助金额:
    $ 19.25万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了