Temperature control of the C. elegans circadian clock
线虫生物钟的温度控制
基本信息
- 批准号:8445997
- 负责人:
- 金额:$ 19.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAfferent NeuronsAnimal ModelAnimalsBehaviorBiological AssayBiological ClocksBiological ModelsBody TemperatureBody Temperature ChangesBrainBrain regionCaenorhabditis elegansCandidate Disease GeneCellsCentral Nervous System DiseasesCircadian RhythmsCodeComplexCuesDiseaseEsthesiaEtiologyExhibitsFluorescenceGene ComponentsGene ExpressionGene Expression ProfilingGenesGeneticGenetic ModelsGenetic ScreeningGenomeHeat-Shock ResponseHomologous GeneHormonalHourHumanImageLightMammalsMapsMeasurementMeasuresMediatingModelingMolecularMonitorMoodsMutationNeural PathwaysNeurobiologyNeuronsOrganismOutputPathway interactionsPatientsPerceptionPeripheralPhysiologicalPhysiologyPlayProcessPropertyReaderReporterReporter GenesResearchRoleScreening procedureSecondary toSeveritiesSignal PathwaySignal TransductionSleepStrokeSystemTemperatureTestingTimeTissuesTransgenic OrganismsWorkbasecircadian pacemakerfield studyflyin vivoinsightmutantnervous system disorderneural circuitnovelresponsesuprachiasmatic nucleus
项目摘要
DESCRIPTION (provided by applicant): Daily (circadian) rhythms control multiple aspects of human behavior and physiology (e.g. sleep, mood, body temperature), and disruption of these rhythms can either cause or affect the severity of most neurological disorders. Circadian rhythms are driven by clocks in our brain and body that can be entrained by daily light and/or temperature cycles. Mechanisms comprising these light-entrained clocks in humans and most model organisms studied are well known, but how temperature signals control these clocks is poorly understood. Recent studies in mammals have demonstrated that natural body temperature cycles are crucial entrainment signals for keeping peripheral body clocks in sync. Our research has discovered for the first time circadian genes entrained by temperature cycles in the model organism Caenorhabditis elegans, establishing this animal as a new model in the clock field for studying the temperature-entrained clock(s). C. elegans is a well- established system to study temperature responses; it has a well-mapped neural circuitry that senses small changes in temperature, and exhibits circadian behavior induced by temperature cycles. This proposal will use real-time imaging combined with genetic approaches in C. elegans and a recently developed transgenic circadian reporter to investigate the mechanisms underlying temperature-entrainment of the clock(s). Aim 1 will develop a real-time automated imaging system for long-term recording and quantification of circadian rhythms in gene expression in C. elegans induced by temperature cycles. This new in vivo automated imaging system will be useful for studying temperature-entrained rhythms in genetic mutants and strains defective in perception and transduction of temperature signals in C. elegans. The automated system will also allow to genetically screen and isolate new mutations in genes that change temperature-entrained circadian rhythms. Aim 2 will define and characterize the molecular components of the temperature-entrained clock(s). These components are expected to be coding for clock genes and components that process temperature information to the clock(s). We will use advanced whole-genome re-sequencing approaches to identify these molecular components. This genetic model organism provides an attractive new avenue for understanding the circadian clock, and it is possible that homologs of new genes identified in C. elegans that are necessary for temperature-entrainment of this clock may function in higher organisms.
PUBLIC HEALTH RELEVANCE: This proposal will address the genetic and neurobiological basis of temperature-entrained circadian rhythms. Understanding the inner workings of the circadian clock in great depth and the impacts on circadian time keeping is crucial in better understanding circadian rhythm disruptions, such as changes in natural body temperature cycles, commonly found in patients with neurological disorders, such as stroke.
描述(由申请人提供):每日(昼夜节律)节律控制着人类行为和生理学的多个方面(例如睡眠、情绪、体温),这些节律的破坏可能导致或影响大多数神经系统疾病的严重程度。昼夜节律是由我们大脑和身体中的时钟驱动的,这些时钟可以受到日常光和/或温度周期的影响。人类和大多数研究的模型生物中包含这些光夹带时钟的机制是众所周知的,但人们对温度信号如何控制这些时钟却知之甚少。最近对哺乳动物的研究表明,自然体温周期是保持外周生物钟同步的关键夹带信号。我们的研究首次在模式生物秀丽隐杆线虫中发现了温度循环所夹带的昼夜节律基因,将该动物建立为时钟领域研究温度夹带时钟的新模型。线虫是研究温度响应的成熟系统;它具有清晰的神经回路,可以感知温度的微小变化,并表现出由温度循环引起的昼夜节律行为。该提案将使用实时成像结合线虫的遗传方法和最近开发的转基因昼夜节律报告器来研究时钟温度夹带的机制。目标 1 将开发一种实时自动成像系统,用于长期记录和量化温度循环诱导的线虫基因表达的昼夜节律。这种新的体内自动成像系统将有助于研究秀丽隐杆线虫温度信号感知和转导缺陷的基因突变体和菌株中的温度控制节律。该自动化系统还将允许从基因上筛选和分离改变温度引起的昼夜节律的基因的新突变。目标 2 将定义和表征温度引起的时钟的分子成分。这些组件预计将编码时钟基因和处理时钟温度信息的组件。我们将使用先进的全基因组重测序方法来识别这些分子成分。这种遗传模型生物体为理解生物钟提供了一个有吸引力的新途径,并且在线虫中鉴定出的新基因的同源物可能在高等生物中发挥作用,这些基因对于该生物钟的温度夹带是必需的。
公共健康相关性:该提案将解决温度引起的昼夜节律的遗传和神经生物学基础。深入了解生物钟的内部运作及其对昼夜节律时间的影响对于更好地了解昼夜节律紊乱至关重要,例如自然体温周期的变化,这种情况常见于中风等神经系统疾病患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Martinus Van der Linden其他文献
Alexander Martinus Van der Linden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Martinus Van der Linden', 18)}}的其他基金
Temperature control of the C. elegans circadian clock
线虫生物钟的温度控制
- 批准号:
8536970 - 财政年份:2012
- 资助金额:
$ 19.1万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别:
Neuroimmune interactions for laryngeal sensorimotor neuropathy in postviral influenza infection
病毒性流感感染后喉部感觉运动神经病变的神经免疫相互作用
- 批准号:
10827254 - 财政年份:2023
- 资助金额:
$ 19.1万 - 项目类别: