Oxaloacetate's Brain Effects
草酰乙酸对大脑的影响
基本信息
- 批准号:8418687
- 负责人:
- 金额:$ 7.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-02-15 至 2014-01-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAgeAlzheimer&aposs DiseaseBioenergeticsBiogenesisBlood GlucoseBrainCREB1 geneCaenorhabditis elegansCaloric RestrictionCellsCitrate (si)-SynthaseCitratesCitric Acid CycleCoupledDataDicarboxylic AcidsDiseaseElectron TransportEquilibriumFOXO1A geneFutureGene ExpressionGluconeogenesisGlucoseHumanInsulinKainic AcidLaboratoriesLife ExtensionLipid PeroxidationLongevityMAP Kinase GeneMAPK14 geneMAPK3 geneMalatesManufacturer NameMarketingMediatingMitochondriaMitochondrial DNAMonitorMusNADHNeurodegenerative DisordersOxalacetic AcidOxaloacetatesOxidation-ReductionOxygen ConsumptionParkinson DiseasePathway interactionsPharmaceutical PreparationsPhosphorylationPilot ProjectsProteinsProto-Oncogene Proteins c-aktReactionReportingRespirationRouteSeizuresSignal TransductionSignaling Pathway GeneSupplementationTestingTherapeuticWeightagedanti agingbasebrain metabolismcase findingcytochrome cdetection of nutrientdiabeticdietary supplementsenzyme activityglucose tolerancehuman FRAP1 proteinin vivointerestintraperitonealmimeticsneuroblastoma celloxidationpreventresearch studytrend
项目摘要
DESCRIPTION (provided by applicant): Enhancing brain mitochondrial respiration could conceivably benefit diseases with reduced brain electron transport chain enzyme activities. This includes several common diseases such as Alzheimer's disease and Parkinson's disease. We and others have proposed that shifting cell cytosolic redox balances towards a more oxidized state might increase mitochondrial respiration and that this may have therapeutic consequences. To accomplish this manipulation my laboratory has screened a number of compounds, and preliminary experiments suggest oxaloacetate (OAA), whose reduction to malate is coupled to the oxidation of NADH to NAD+, holds particular promise. OAA, a dicarboxylic acid, is a Krebs cycle and gluconeogenesis intermediate. You can purchase it as a nutritional supplement. One manufacturer markets it as a caloric restriction mimetic and "longevity supplement". These claims are based on a 2009 study in which OAA-treated C. elegans worms outlived untreated worms. Two in vivo OAA vertebrate studies are also reported. The first is a 1968 study of human diabetics, which found that OAA treatment lowered blood glucose levels. The second is a 2003 study performed on mice, which found OAA prevented kainic acid-induced seizures, brain mtDNA degradation, and lipid peroxidation. Aside from these three studies OAA supplementation effects are essentially unknown. In preliminary studies we found adding OAA to neuroblastoma cells robustly increased mitochondrial oxygen consumption. In mice, we found systemically administered OAA increased brain PGC1a levels. Brain TNFa expression, on the other hand, was reduced and ERK1/2 phosphorylation trended in the same direction. Based on conceptual and preliminary data considerations OAA therefore warrants further consideration as a pro-respiration, pro-mitochondrial biogenesis agent that may act as a brain-penetrating caloric restriction mimetic. I am therefore hypothesizing systemically administered OAA will activate pathways that contribute to or mediate brain mitochondrial biogenesis. Support for this hypothesis would justify additional, more detailed studies of how OAA supplements affect brain metabolism, signaling pathways, and gene expression. The pilot studies we now propose will further test how systemically administered OAA affects brain mitochondrial biogenesis, proteins and pathways that are implicated in mitochondrial biogenesis, and nutrient sensing pathways in OAA-treated mice. In Aim 1 we will characterize brain bioenergetics and bioenergetics-related pathways in young OAA-treated mice. In Aim 2 we will characterize brain bioenergetics and bioenergetics-related pathways in aged mice treated with OAA over a 12-month period. If the studies I now propose confirm and extend our preliminary findings, the case for developing OAA or OAA-like drugs for the treatment of diseases with reduced brain bioenergetics will be immensely strengthened.
描述(由申请人提供):增强脑线粒体呼吸可能会通过减少的脑电子传输链酶活性使疾病受益。这包括几种常见疾病,例如阿尔茨海默氏病和帕金森氏病。我们和其他人提出,将细胞胞质氧化还原平衡转移到更氧化的状态可能会增加线粒体呼吸,这可能会带来治疗后果。为了完成这种操作,我的实验室已经筛选了许多化合物,初步实验表明草乙酸(OAA)的减少到苹果酸盐与NADH氧化为NAD+的氧化具有特殊的希望。 OAA是一种二羧酸,是克雷布斯循环和糖异生中间体。您可以将其作为营养补品购买。一家制造商将其推销为热量限制模仿和“寿命补充”。这些主张是基于2009年的一项研究,在该研究中,OAA处理的秀丽隐杆线虫蠕虫未经处理的蠕虫。还报道了两项体内OAA脊椎动物研究。第一个是1968年的人类糖尿病患者研究,发现OAA治疗降低了血糖水平。第二项是对小鼠进行的2003年研究,该研究发现OAA可防止海藻酸诱导的癫痫发作,脑mtDNA降解和脂质过氧化。除了这三项研究外,OAA补充效应本质上是未知的。在初步研究中,我们发现将OAA添加到神经母细胞瘤细胞中,可强烈增加线粒体氧的消耗。在小鼠中,我们发现系统施用的OAA增加了脑PGC1A水平。另一方面,脑TNFA表达降低,ERK1/2磷酸化沿相同方向趋势。因此,基于概念和初步数据注意事项OAA需要进一步的考虑作为促呼气的,促肌肉的生物发生剂,可能充当大脑渗透热量限制的模拟物。因此,我假设系统地施用的OAA将激活有助于或介导脑线粒体生物发生的途径。对这一假设的支持将证明有关OAA补充剂如何影响脑代谢,信号通路和基因表达的其他更详细的研究是合理的。我们现在提出的试点研究将进一步测试系统施用的OAA如何影响与线粒体生物发生有关的脑部线粒体生物发生,蛋白质和途径以及OAA处理的小鼠中的营养感应途径。在AIM 1中,我们将表征大脑生物能学和与年轻OAA治疗的小鼠相关的途径。在AIM 2中,我们将在12个月内用OAA治疗的老年小鼠中脑生物能学和与生物能相关的途径。如果我现在提出的研究确认并扩展了我们的初步发现,则开发OAA或OAA样药物来治疗脑生物能量降低的疾病的情况将得到极大的增强。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RUSSELL H. SWERDLOW其他文献
RUSSELL H. SWERDLOW的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RUSSELL H. SWERDLOW', 18)}}的其他基金
University of Kansas Alzheimers Disease Center P30 Neuropathology supplement
堪萨斯大学阿尔茨海默病中心 P30 神经病理学补充
- 批准号:
10741516 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
University of Kansas Alzheimer's Disease Research Center (KU ADRC)
堪萨斯大学阿尔茨海默病研究中心 (KU ADRC)
- 批准号:
10466947 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
University of Kansas Alzheimer's Disease Research Center (KU ADRC)
堪萨斯大学阿尔茨海默病研究中心 (KU ADRC)
- 批准号:
10666543 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
University of Kansas Alzheimer's Disease Research Center (KU ADRC)
堪萨斯大学阿尔茨海默病研究中心 (KU ADRC)
- 批准号:
10264622 - 财政年份:2021
- 资助金额:
$ 7.29万 - 项目类别:
Mechanistic Basis of the mtDNA Haplogroup J-Alzheimer's Disease Association
mtDNA 单倍群 J-阿尔茨海默病协会的机制基础
- 批准号:
10565875 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
Mechanistic Basis of the mtDNA Haplogroup J-Alzheimer's Disease Association
mtDNA 单倍群 J-阿尔茨海默病协会的机制基础
- 批准号:
10353367 - 财政年份:2019
- 资助金额:
$ 7.29万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CHCHD2在年龄相关肝脏胆固醇代谢紊乱中的作用及机制
- 批准号:82300679
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颗粒细胞棕榈酰化蛋白FXR1靶向CX43mRNA在年龄相关卵母细胞质量下降中的机制研究
- 批准号:82301784
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
年龄相关性黄斑变性治疗中双靶向药物递释策略及其机制研究
- 批准号:82301217
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多氯联苯与机体交互作用对生物学年龄的影响及在衰老中的作用机制
- 批准号:82373667
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 7.29万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
- 批准号:
10557547 - 财政年份:2023
- 资助金额:
$ 7.29万 - 项目类别: