Metal Binding to the Bacterial Cell Wall
金属与细菌细胞壁的结合
基本信息
- 批准号:8463215
- 负责人:
- 金额:$ 24.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AbbreviationsAcetylglucosamineAddressAdsorptionAlanineAmidesAmino AcidsAntibiotic TherapyAntibioticsArchitectureAreaBacillus (bacterium)Bacillus anthracisBacteriaBindingBiochemicalBiochemistryBiologyCadmiumCell WallCellsChemicalsChemistryComplexCoupledCytolysisDataDevelopmentDialysis procedureDivalent CationsDrug DesignEnvironmentEquilibriumFacultyFoundationsGeneticGenus staphylococcusGoalsGram-Positive BacteriaHealthHomeostasisHumanIonsKineticsKnowledgeLabelLipidsMeasurementMeasuresMechanicsMediatingMembraneMetal Ion BindingMetalsMethodsMicrobiologyModelingMolecular ModelsMolecular StructureMono-SNMR SpectroscopyOutcomePeptidoglycanPhysiologicalPolyaminesPolymersResearchResolutionResourcesRiceRoleSamplingSeriesSiteSolventsSpectrum AnalysisStaphylococcus aureusStructureSystemTechnologyTeichoic AcidsTrainingTranslatingVertebral columnVirulenceWaterWorkabsorptionantimicrobialbasechelationcomputational chemistrycrosslinkdrug developmentextracellularfunctional groupinnovationinorganic phosphateinsightmembermolecular dynamicsmolecular modelingmutantnovelpathogenpathogenic bacteriapolyglycerolpolyribitol phosphateprogramspublic health relevancequantumresearch studysolid state nuclear magnetic resonancestructural biologyuptake
项目摘要
DESCRIPTION (provided by applicant):
Binding of metals to the bacterial cell wall is essential for peptidoglycan integrity and metal ion homeostasis. Although a potential antibiotic target, drug development suffers from insufficient understanding of how metal binding occurs. The peptidoglycan (PG) and teichoic acids (TA) work in harmony to form the metal binding pocket. Our long-term goal is to provide chemistry and biochemistry explanations of TA function in its different physiological roles. The objective of this application is to determine these rules with regard to metal ion binding in cell walls composed of TA and A13 or A31 PG. These form the sacculus for pathogens B. anthracis and S. aureus, respectively. The central hypothesis of this application is that the metal binding mechanism is mediated through solvent-separated ion-pairs with anionic groups and/or amide carbonyls of PG and the TA polymer. This hypothesis arises from Preliminary NMR Data used to measure the 111Cd2+ to TA distance, which is long enough to allow water molecules to separate these species. Likewise, NMR data show that the phosphate to D-Ala distance is 4.5 ¿ and increases to 5.4 ¿ when Mg2+ is present. Molecular modeling of this distance constraint yields a solvent-separated zwitterion pair. This result contradicts the current paradigm of TA in metal binding, where D-Ala and phosphate supposedly form a contact ion pair and inhibit the chelation of mono and divalent cations. Additional NMR data show that metal binding brings the TA polymer closer the D-Ala group of the PG. This is the first measurement of the TA/PG architecture. Preliminary data guide the development of two specific aims: 1) Identify Changes in TA Structure Upon Metal Chelation; and 2) Characterize the Cell Wall (TA and PG) Structure Before and After Metal Adsorption. The approach uses equilibrium dialysis of Cd2+, Mg2+, Ca2+, K+, and Na+ with cell wall (PG+TA), PG only, and TA only. The concentration of free ions is measured with atomic absorption spectroscopy, providing kinetic data for the equilibrium binding constants. This functional data provides mechanistic insight to the structural data collected with REDOR NMR spectroscopy. Here, 13C and 15N isotopic labeling of the TA and PG components enables REDOR NMR to measure the internuclear distances. Molecular models of localized structure are created with ab-initio calculations with the NMR-based distance constraints. Molecular dynamics simulations using the TA/PG interactions generate models of the cell wall architecture. The innovation of this work arises because it capitalizes on advances in NMR spectroscopy, genetic mutants, and isotopic labeling to solve a complex biochemical problem. Metal binding in the cell wall is an under-investigated, complex, and biologically important system where solid-state NMR experiments could make a truly high impact and yield high-resolution structural information. The proposed research is significant because solid-state NMR methods are coupled with quantum mechanical calculations to elucidate the interactions between teichoic acid, metals, and peptidoglycan. If successful, these studies could potentially guide the development of novel antibiotics.
描述(由申请人提供):
金属与细菌细胞壁的结合对于肽聚糖的完整性和金属离子稳态至关重要,尽管它是潜在的抗生素靶标,但对金属结合如何发生的了解不够。我们的长期目标是提供 TA 在不同生理作用中的功能的化学和生物化学解释。金属离子结合在由 TA 和 A13 或 A31 PG 组成的细胞壁中,它们分别形成病原体炭疽芽孢杆菌和金黄色葡萄球菌的球囊。本申请的中心假设是金属结合机制是通过溶剂分离的离子介导的。 -与 PG 和 TA 聚合物的阴离子基团和/或酰胺羰基配对。该假设源自用于测量的初步 NMR 数据。 111Cd2+ 到 TA 的距离足够长,足以让水分子分离这些物质。同样,NMR 数据显示磷酸盐到 D-Ala 的距离为 4.5 ¿并增加至 5.4 ¿当 Mg2+ 存在时,该距离约束的分子模型产生了溶剂分离的两性离子对,该结果与金属结合中的 TA 范例相矛盾,其中 D-Ala 和磷酸盐据推测形成接触离子对并抑制单和离子的螯合。其他 NMR 数据表明,金属结合使 TA 聚合物更接近 PG 的 D-Ala 基团,这是 TA/PG 结构的首次测量。初步数据指导两个具体目标的制定:1) 识别金属螯合时 TA 结构的变化;2) 表征金属吸附前后的细胞壁(TA 和 PG)结构。带细胞壁的 Ca2+、K+ 和 Na+(PG+TA)、仅 PG 和仅 TA 使用原子吸收光谱测量游离离子的浓度,提供动力学数据。该功能数据为通过 REDOR NMR 光谱收集的结构数据提供了机制见解。 TA 和 PG 组分的 13C 和 15N 同位素标记使 REDOR NMR 能够测量局部结构的核间距离。使用基于 NMR 的距离约束进行从头计算创建的细胞壁结构模型。这项工作的创新之处在于它利用核磁共振波谱、基因突变和同位素标记的进步来解决复杂的生化问题。细胞壁中的金属结合是一个尚未得到充分研究的、复杂的、具有重要生物学意义的固态系统。核磁共振实验可以产生真正的高影响并产生高分辨率的结构信息,因为固态核磁共振方法与量子力学计算相结合,可以阐明磷壁酸、如果成功,这些研究可能会指导新型抗生素的开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles V Rice其他文献
Charles V Rice的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles V Rice', 18)}}的其他基金
Universal Anti-PAMP Agent to Improve Wound Healing
促进伤口愈合的通用抗 PAMP 剂
- 批准号:
10647897 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
Universal Anti-PAMP Agent to Improve Wound Healing
促进伤口愈合的通用抗 PAMP 剂
- 批准号:
10527023 - 财政年份:2022
- 资助金额:
$ 24.03万 - 项目类别:
相似国自然基金
水解酶和N-乙酰氨基葡萄糖转运蛋白在结瘤和丛枝菌根共生中应答调节的作用
- 批准号:
- 批准年份:2021
- 资助金额:300 万元
- 项目类别:
OGT介导的YTHDF1 O-乙酰氨基葡萄糖(O-GlcNAc)修饰在肿瘤发生和肿瘤免疫中的作用研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
NMR研究D-乙酰氨基葡萄糖脱水制含氮呋喃化学品的机理及产物调控
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
单催化域几丁质酶CmChi1多催化活性的分子机制研究
- 批准号:21908102
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
STIM1介导O-乙酰氨基葡萄糖修饰诱导血管钙化的分子机制及淫羊藿苷干预作用的研究
- 批准号:81973507
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目