Depth-resolved Optical Imaging of Neural Action Potentials

神经动作电位的深度分辨光学成像

基本信息

  • 批准号:
    8022131
  • 负责人:
  • 金额:
    $ 33.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-12-15 至 2014-11-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): As the development of new methods that directly assess neural activity becomes a pressing need, a variety of optical techniques is being investigated for imaging neural structure and function with high temporal and spatial resolutions. Recently, the emerging technology of spectral-domain optical coherence tomography (OCT) has allowed us to simultaneously detect action potential (AP) related phase changes at different depths from invertebrate axons on a millisecond time scale. We also utilized the technology for depth- localization of APs in axons stained with voltage-sensitive dyes, and constructed highly sensitivity polarization-sensitive systems for measuring retardance change during AP propagation. These techniques have the additional advantage of being less invasive than many other measurements, because they work in reflection geometry, which means the source and detector are on the same side of the nerve. The long term goal is to provide clinically useful noninvasive tests of nerve function. The overall objective of this project is to develop phase- and polarization-sensitive OCT techniques and contrast enhancement methods for depth-resolved imaging of neural activity in various preparations including squid giant axon, pike olfactory nerve, and salamander and mouse retinas. The objective includes development of insights about the nature and origin of the optically recorded signals. Presently, the mechanistic origins of the structural changes producing the optical signals are not known. The lack of knowledge hampers improvements in the assessment of neural activity. Furthermore, development of new techniques and contrasts is essential for scientific and clinical applications. PUBLIC HEALTH RELEVANCE: The focus of this proposal is to image transient structural changes during physiological activity (function) prior to any anatomical structural loss or permanent damage in neural tissue. By developing novel non-contact non-invasive optical imaging techniques, we intend to find the most favorable optical measures of neural activity that can be utilized for early detection of neural diseases.
描述(由申请人提供):随着开发直接评估神经活动的新方法成为迫切需要,正在研究各种光学技术以高时间和空间分辨率对神经结构和功能进行成像。最近,新兴的谱域光学相干断层扫描(OCT)技术使我们能够在毫秒时间尺度上同时检测无脊椎动物轴突不同深度的动作电位(AP)相关的相位变化。我们还利用该技术对电压敏感染料染色的轴突中的 AP 进行深度定位,并构建了高灵敏度的偏振敏感系统来测量 AP 传播过程中的延迟变化。这些技术具有比许多其他测量侵入性更小的额外优势,因为它们在反射几何中工作,这意味着源和探测器位于神经的同一侧。长期目标是提供临床上有用的神经功能无创测试。该项目的总体目标是开发相位和偏振敏感的 OCT 技术和对比度增强方法,用于对各种制剂中的神经活动进行深度分辨成像,包括鱿鱼巨轴突、梭子鱼嗅神经、蝾螈和小鼠视网膜。目标包括深入了解光学记录信号的性质和起源。目前,产生光信号的结构变化的机械起源尚不清楚。知识的缺乏阻碍了神经活动评估的改进。此外,新技术和对比的开发对于科学和临床应用至关重要。 公共健康相关性:该提案的重点是在神经组织发生任何解剖结构损失或永久性损伤之前对生理活动(功能)期间的短暂结构变化进行成像。通过开发新型非接触式非侵入性光学成像技术,我们打算找到最有利的神经活动光学测量方法,可用于神经疾病的早期检测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TANER AKKIN其他文献

TANER AKKIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TANER AKKIN', 18)}}的其他基金

BRAIN CONNECTS: Center for Mesoscale Connectomics
大脑连接:中尺度连接组学中心
  • 批准号:
    10664257
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets
用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标
  • 批准号:
    10443418
  • 财政年份:
    2022
  • 资助金额:
    $ 33.93万
  • 项目类别:
Label-free optical imaging for human mesoscale connectivity with a focus on deep brain stimulation targets
用于人体中尺度连接的无标记光学成像,重点关注深部脑刺激目标
  • 批准号:
    10586107
  • 财政年份:
    2022
  • 资助金额:
    $ 33.93万
  • 项目类别:
Optical imaging of neural activity based on the Lorentz effect
基于洛伦兹效应的神经活动光学成像
  • 批准号:
    9977534
  • 财政年份:
    2020
  • 资助金额:
    $ 33.93万
  • 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
  • 批准号:
    8204779
  • 财政年份:
    2010
  • 资助金额:
    $ 33.93万
  • 项目类别:
Depth-resolved Optical Imaging of Neural Action Potentials
神经动作电位的深度分辨光学成像
  • 批准号:
    8401905
  • 财政年份:
    2010
  • 资助金额:
    $ 33.93万
  • 项目类别:
Optical Detection of Neural Activity
神经活动的光学检测
  • 批准号:
    7286815
  • 财政年份:
    2006
  • 资助金额:
    $ 33.93万
  • 项目类别:
Optical Detection of Neural Activity
神经活动的光学检测
  • 批准号:
    7139440
  • 财政年份:
    2006
  • 资助金额:
    $ 33.93万
  • 项目类别:

相似国自然基金

儿童脊柱区腧穴针刺安全性的发育解剖学及三维数字化研究
  • 批准号:
    82360892
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
寰枢椎脱位后路钉棒内固定系统复位能力优化的相关解剖学及生物力学研究
  • 批准号:
    82272582
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于次生乳管网络结构发育比较解剖学和转录组学的橡胶树产胶机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于垂体腺瘤海绵窦侵袭模式的相关膜性解剖学及影像学研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
亚热带典型阔叶树种径向生长的解剖学特征及其碳分配调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A dendritic nexus in the circuits that coordinate learning
协调学习的电路中的树突状连接
  • 批准号:
    10659554
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
Cellular Basis for Autonomic Regulation of Cardiac Arrhythmias
心律失常自主调节的细胞基础
  • 批准号:
    10627578
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
  • 批准号:
    10751621
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
Neuropixels Opto: Integrated Silicon Probes for Cell-Type-Specific Electrophysiology
Neuropixels Opto:用于细胞类型特异性电生理学的集成硅探针
  • 批准号:
    10731991
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
Molecular and Functional Mechanisms of the aging auditory neuron
衰老听觉神经元的分子和功能机制
  • 批准号:
    10496285
  • 财政年份:
    2023
  • 资助金额:
    $ 33.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了