HDAC6: a target for regeneration following injury in the nervous system
HDAC6:神经系统损伤后的再生目标
基本信息
- 批准号:8415946
- 负责人:
- 金额:$ 38.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AcetylationAcetyltransferaseActinsAcuteAdultAffectAstrocytesAxonCell Culture TechniquesCellsChondroitin Sulfate ProteoglycanChronicCytoskeletonDeacetylationDevelopmentDiseaseDorsalEnvironmentEnzymesExposure toFailureFiberGrowthHistone AcetylationHistonesIn VitroInjuryIsoenzymesLeadLysineMediatingMethodsMicrofluidicsMicrotubulesModelingMolecularMusMyelinMyelin Associated GlycoproteinNatural regenerationNervous system structureNeuraxisNeuritesNeuronsNeurosciencesOutcomeParalysedPatientsPlayProcessPropertyProtein IsoformsProteinsPublishingRattusRecoveryRecovery of FunctionRegulationRodent ModelRoleSchemeSensorySignal TransductionSpinal cord injuryTestingTherapeuticTreatment EfficacyTubulinZincaxon growthaxon regenerationcentral nervous system injurydisabilitygrowth inhibitory proteinshistone deacetylase 6improvedimproved functioningin vivoinhibitor/antagonistinjuredinjury and repairinsightmotor function recoverynervous system disorderneuronal cell bodynoveloverexpressionpre-clinicalpublic health relevancereceptorregenerativerelating to nervous systemresponserestorationtherapeutic targettranscriptional coactivator p75
项目摘要
DESCRIPTION (provided by applicant): Spinal cord Injury is a problem affecting millions worldwide. A dominant hypothesis in regenerative neuroscience is that patients with spinal cord injury suffer from permanent functional deficits and paralysis because of neural damage, but also because of a limited capacity of CNS axons to regenerate and restore lost neuronal connectivity. According to this scheme, a primary cause of failed regeneration is a limited intrinsic ability of adult neurons to regrow injured axons and the growth-hostile environment of the damaged cord. Several critical molecules that impede axon regeneration in the injury territory have been identified and include myelin-derived growth-inhibitory proteins such as myelin associated-glycoprotein (MAG) and reactive astrocyte-produced chondroitin sulfate proteoglycans (CSPGs). Myelin and astrocyte-derived inhibitory signals ultimately converge on the actin and microtubule cytoskeleton, affecting their stability, dynamics, and ability to direct axonal growth. We have found that specifically targeting histone deacetylase 6 (HDAC6) in neurons, using both pharmacological inhibitors and knockdown methods, can overcome the inhibitory effects of MAG or CSPGs to axon growth, in vitro. Using microfluidic chambers that isolate axons from the neuronal cell bodies we have determined that local processes in the axon mediate this effect. Consistent with this, we have found that HDAC6 inhibition or knockdown does not increase histone acetylation (a canonical function of pan-HDAC inhibitors that target multiple HDAC isozymes) and that recovery of growth can occur in the presence of a transcriptional inhibitor. A primary, and non-nuclear, function of HDAC6 is the deacetylation of 1-tubulin lysine 40 and, in turn, the modulation of microtubule dynamics. Given the role of the microtubule in axon growth, we hypothesize that HDAC6 plays a role in mediating a cell's response to myelin and astrocyte derived inhibitory signals via 1- tubulin deacetylation and microtubule destabilization. In the Specific Aims of this Application, we will examine the function of HDAC6, as well as the 1-tubulin acetylating enzyme, Elp3, in growth-inhibited axons. We will examine the extent to which their activities modulate the acetylation level of 1-tubulin and the role of 1-tubulin deacetylation in microtubule destabilization and axonal regeneration failure. We also will test whether HDAC6 plays a role in axon regeneration failure in vivo and whether increasing 1-tubulin acetylation by HDAC inhibition enhances axonal regeneration after spinal cord injury.
描述(由申请人提供):脊髓损伤是一个影响全世界数百万人的问题。再生神经科学的一个主要假设是,脊髓损伤患者由于神经损伤而遭受永久性功能缺陷和瘫痪,但也因为中枢神经系统轴突再生和恢复失去的神经元连接的能力有限。根据该方案,再生失败的主要原因是成年神经元再生受损轴突的内在能力有限以及受损脊髓的生长不利环境。已经鉴定出几种阻碍损伤区域轴突再生的关键分子,包括髓磷脂衍生的生长抑制蛋白,例如髓磷脂相关糖蛋白(MAG)和反应性星形胶质细胞产生的硫酸软骨素蛋白聚糖(CSPG)。髓磷脂和星形胶质细胞衍生的抑制信号最终汇聚到肌动蛋白和微管细胞骨架上,影响它们的稳定性、动力学和指导轴突生长的能力。 我们发现,使用药理学抑制剂和敲低方法特异性靶向神经元中的组蛋白脱乙酰酶 6 (HDAC6),可以在体外克服 MAG 或 CSPG 对轴突生长的抑制作用。使用将轴突与神经元细胞体分离的微流体室,我们确定轴突中的局部过程介导了这种效应。与此一致的是,我们发现 HDAC6 抑制或敲低不会增加组蛋白乙酰化(针对多种 HDAC 同工酶的泛 HDAC 抑制剂的典型功能),并且在转录抑制剂存在的情况下可以发生生长恢复。 HDAC6 的主要非核功能是 1-微管蛋白赖氨酸 40 的脱乙酰化,进而调节微管动力学。鉴于微管在轴突生长中的作用,我们假设 HDAC6 通过 1-微管蛋白脱乙酰化和微管不稳定,在介导细胞对髓磷脂和星形胶质细胞衍生的抑制信号的反应中发挥作用。在本申请的具体目标中,我们将检查 HDAC6 以及 1-微管蛋白乙酰化酶 Elp3 在生长抑制的轴突中的功能。我们将研究它们的活性调节 1-微管蛋白乙酰化水平的程度以及 1-微管蛋白去乙酰化在微管不稳定和轴突再生失败中的作用。我们还将测试 HDAC6 是否在体内轴突再生失败中发挥作用,以及通过 HDAC 抑制增加 1-微管蛋白乙酰化是否会增强脊髓损伤后的轴突再生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brett Cameron Langley其他文献
Brett Cameron Langley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brett Cameron Langley', 18)}}的其他基金
HDAC6: a target for regeneration following injury in the nervous system
HDAC6:神经系统损伤后的再生目标
- 批准号:
8241046 - 财政年份:2011
- 资助金额:
$ 38.67万 - 项目类别:
HDAC6: a target for regeneration following injury in the nervous system
HDAC6:神经系统损伤后的再生目标
- 批准号:
8624555 - 财政年份:2011
- 资助金额:
$ 38.67万 - 项目类别:
HDAC6: a target for regeneration following injury in the nervous system
HDAC6:神经系统损伤后的再生目标
- 批准号:
8105788 - 财政年份:2011
- 资助金额:
$ 38.67万 - 项目类别:
相似国自然基金
FHF1招募乙酰转移酶p300调控复极储备在心肌肥厚室性心律失常中的作用及机制
- 批准号:82360072
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
组蛋白乙酰转移酶GCN5调控糖脂代谢促进胶质母细胞瘤干细胞活力的机制与功能研究
- 批准号:82373095
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SCML4协同乙酰化转移酶HBO1促进Trm表观遗传修饰增强抗肿瘤免疫的分子机制研究
- 批准号:82303153
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EB病毒v-snoRNA1结合乙酰转移酶NAT10上调鼻咽癌HLA-E表达促进NK细胞耗竭的机制研究
- 批准号:82303069
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
家蚕组蛋白乙酰转移酶BmMOF与BmNPV晚期表达因子LEF-6互作抑制病毒侵染的分子机制研究
- 批准号:32302818
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Regulatory mechanisms governing imprinted domains during early development
早期发育过程中管理印记域的调控机制
- 批准号:
10697375 - 财政年份:2022
- 资助金额:
$ 38.67万 - 项目类别:
Regulatory mechanisms governing imprinted domains during early development
早期发育过程中管理印记域的调控机制
- 批准号:
10502723 - 财政年份:2022
- 资助金额:
$ 38.67万 - 项目类别:
Regulation of cell reprogramming by matrix stiffness
通过基质硬度调节细胞重编程
- 批准号:
10281141 - 财政年份:2021
- 资助金额:
$ 38.67万 - 项目类别:
Targeting durotaxis in lung injury and fibrosis
靶向肺损伤和纤维化中的杜罗轴
- 批准号:
10364927 - 财政年份:2021
- 资助金额:
$ 38.67万 - 项目类别:
Bromodomain-containing Protein 4 in Profibrotic Gene Expression and Lung Fibrosis
含溴结构域蛋白 4 在促纤维化基因表达和肺纤维化中的作用
- 批准号:
10556325 - 财政年份:2021
- 资助金额:
$ 38.67万 - 项目类别: