Coding and processing of error signals in inferior olivary-cerebellar networks
下橄榄小脑网络中误差信号的编码和处理
基本信息
- 批准号:8448783
- 负责人:
- 金额:$ 37.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-06-02 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAction PotentialsAddressAirAnimalsAttention deficit hyperactivity disorderAutistic DisorderAutomobile DrivingAxonBlinkingBrainCerebellumCodeCorneaCouplingDetectionElectrodesEquationEventEyeFailureFiberFrequenciesFutureGeneticGoalsGolfHearingImageImpairmentIndividualInferiorKnockout MiceKnowledgeLearningLinkMediatingMemoryMonitorMotorMovementMusMutant Strains MiceNeuronsOlives - dietaryOutcomePathway interactionsPatternPerformancePopulationProbabilityProblem SolvingProcessPropertyRecording of previous eventsResearchRoleSchizophreniaSideSignal TransductionStimulusSymptomsTestingTimeTrigeminal NucleiUncertaintyUpdateWorkawakebaseclassical conditioningconditioningconnexin 36electrical microstimulationexpectationimprovedmicrostimulationmotor controlmotor learningnervous system disorderneural circuitneural patterningnovel strategiesoptogeneticsrelating to nervous systemresearch studyresponsestatisticstheoriestooltwo-photon
项目摘要
DESCRIPTION (provided by applicant): We learn from our mistakes. The goal of this project is to understand how the errors that drive learning are encoded and processed in the brain. All experiments are done using eyeblink conditioning, a simple form of associative learning that offers a number of advantages: 1) Errors are under experimental control and can be easily manipulated. In eyeblink conditioning, subjects learn to blink and protect the eye from a corneal air-puff that is applied every time after they hear a tone. Error, defined as the discrepancy between the real air-puff and what the subject expected, can be manipulated simply by unexpectedly changing the strength of the air-puff on any given trial. 2) Eyeblink conditioning can be done in mice. This opens up the door for approaches that take advantage of genetic tools to investigate the neural basis of error processing in awake-behaving animals. 3) The neural circuits mediating eyeblink conditioning have been identified previously. Knowledge about the connectivity of these circuits has led to the hypothesis that neurons in the inferior olive generate error signals by comparing information about the real air-puff, presumably conveyed to the inferior olive via an excitatory pathway from the trigeminal nucleus, and the expected air-puff, presumably conveyed via an inhibitory cerebellar pathway. This project uses the 3 advantages listed above to investigate the role of errors in eyeblink conditioning, and to elucidate the coding and processing of error signals by neurons in the inferior olive. Specific aim 1 challenges the widely-held view that to update expectations (about the strength of future air- puffs, for example), the brain takes into account only the error in the current trial. By unexpectedly changing the strength of the air-puff trial-by-trial, this aim will define the role of history and statistics of prior errors in updating expectations about future events. Specific aim 2 is about deciphering the neural code used by neurons in the inferior olive to represent errors of different sizes. By doing eyeblink conditioning in mice, while recording single-units and imaging populations of neurons in the inferior olive, this aim will reveal whether synchrony provides information about the size of the error in single trials. Specific aim 3 takes advantage of genetic tools to ask if synchrony in the inferior olive is necessary and/or sufficient to represent the error signal and drive eyeblink conditioning. Whether synchrony is necessary will be addressed by assessing eyeblink conditioning in connexin36 mice, whose activity in the inferior olive is normal except for reduced levels of synchrony due to loss of electrotonic coupling. Whether synchrony is sufficient will be addressed using optogenetic stimulation in mice expressing channelrhodopsin in the inferior olive, and assessing the efficacy with which different spatio-temporal patterns of neural activation can signal error to drive eyeblink conditioning.
描述(由申请人提供):我们从错误中吸取教训。该项目的目标是了解驱动学习的错误如何在大脑中编码和处理。所有实验都是使用眨眼条件反射完成的,这是一种简单的联想学习形式,具有许多优点:1)误差处于实验控制之下,并且可以轻松操纵。在眨眼调节中,受试者学习眨眼并保护眼睛免受每次听到声音后施加的角膜吹气的影响。误差被定义为真实的吹气与受试者预期之间的差异,可以通过在任何给定的试验中意外地改变吹气的强度来控制。 2)眨眼调节可以在小鼠身上进行。这为利用遗传工具研究清醒动物错误处理的神经基础的方法打开了大门。 3)先前已经确定了介导眨眼条件反射的神经回路。关于这些回路连接性的知识导致了这样的假设:下橄榄核中的神经元通过比较真实吹气的信息(可能通过从三叉神经核的兴奋性通路传递到下橄榄核)和预期的空气来产生错误信号-puff,大概是通过抑制性小脑通路传递的。该项目利用上面列出的 3 个优点来研究错误在眨眼条件反射中的作用,并阐明下橄榄神经元对错误信号的编码和处理。具体目标 1 挑战了广泛持有的观点,即为了更新期望(例如,关于未来吹气的强度),大脑仅考虑当前试验中的错误。通过一次又一次地出人意料地改变吹气的强度,这一目标将定义历史记录和先前错误的统计数据在更新对未来事件的预期中的作用。具体目标 2 是破译下橄榄神经元使用的神经代码来表示不同大小的错误。通过对小鼠进行眨眼条件反射,同时记录下橄榄神经元的单个单元和成像群体,这一目标将揭示同步性是否提供了有关单次试验中误差大小的信息。具体目标 3 利用遗传工具来询问下橄榄核中的同步是否必要和/或足以表示误差信号并驱动眨眼调节。同步是否必要将通过评估 connexin36 小鼠的眨眼条件来解决,其下橄榄的活动正常,除了由于电紧张耦合损失导致同步水平降低之外。同步是否足够将通过在下橄榄表达通道视紫红质的小鼠中使用光遗传学刺激来解决,并评估神经激活的不同时空模式可以发出错误信号以驱动眨眼调节的功效。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAVIER F MEDINA其他文献
JAVIER F MEDINA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAVIER F MEDINA', 18)}}的其他基金
Targets of low dose alcohol during cerebellar-driven behavior in mice
小鼠小脑驱动行为期间低剂量酒精的目标
- 批准号:
9337320 - 财政年份:2016
- 资助金额:
$ 37.74万 - 项目类别:
Coding and processing of error signals in inferior olivary-cerebellar networks
下橄榄小脑网络中误差信号的编码和处理
- 批准号:
8271369 - 财政年份:2011
- 资助金额:
$ 37.74万 - 项目类别:
Coding and processing of error signals in inferior olivary-cerebellar networks
下橄榄小脑网络中误差信号的编码和处理
- 批准号:
10655659 - 财政年份:2011
- 资助金额:
$ 37.74万 - 项目类别:
Coding and processing of error signals in inferior olivary-cerebellar networks
下橄榄小脑网络中误差信号的编码和处理
- 批准号:
10522031 - 财政年份:2011
- 资助金额:
$ 37.74万 - 项目类别:
Coding and processing of error signals in inferior olivary-cerebellar networks
下橄榄小脑网络中误差信号的编码和处理
- 批准号:
8086940 - 财政年份:2011
- 资助金额:
$ 37.74万 - 项目类别:
Coding and processing of error signals in inferior olivary-cerebellar networks
下橄榄小脑网络中误差信号的编码和处理
- 批准号:
8645753 - 财政年份:2011
- 资助金额:
$ 37.74万 - 项目类别:
Coding and processing of error signals in inferior olivary-cerebellar networks
下橄榄小脑网络中误差信号的编码和处理
- 批准号:
9432553 - 财政年份:2011
- 资助金额:
$ 37.74万 - 项目类别:
相似国自然基金
神经系统中动作电位双稳传导研究
- 批准号:12375033
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
与痛觉相关的动作电位传导失败的动力学与调控机制
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
神经元离子通道-动作电位-量子化分泌关系研究
- 批准号:31930061
- 批准年份:2019
- 资助金额:303 万元
- 项目类别:重点项目
仿生味觉自适应柔性纳米电极阵列构建研究
- 批准号:61901469
- 批准年份:2019
- 资助金额:24.5 万元
- 项目类别:青年科学基金项目
晚钠电流通过CaMK-II调节跨壁胞内钙离子分布在心肌缺血再灌注心律失常中的作用及机制研究
- 批准号:81900300
- 批准年份:2019
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Differential modulation of dopamine neurons by distinct neurotensin inputs
通过不同的神经降压素输入对多巴胺神经元进行差异调节
- 批准号:
10338471 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
The Noisy Life of the Musician: Implications for Healthy Brain Aging
音乐家的喧闹生活:对大脑健康老化的影响
- 批准号:
10346105 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Differential modulation of dopamine neurons by distinct neurotensin inputs
通过不同的神经降压素输入对多巴胺神经元进行差异调节
- 批准号:
10617254 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Ultra-High-Throughput Plate Reader for Drug Discovery Using All-Optical Electrophysiology
使用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10704010 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别:
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
利用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10385256 - 财政年份:2022
- 资助金额:
$ 37.74万 - 项目类别: