NANO-PATTERNING OF BIOMATERIALS FOR BLOOD-VESSEL FORMATION IN ARTIFICIAL TISSUES
用于人造组织中血管形成的生物材料纳米图案化
基本信息
- 批准号:8484754
- 负责人:
- 金额:$ 3.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-25 至 2017-06-24
- 项目状态:已结题
- 来源:
- 关键词:ActinsAdhesionsAmericanAnalysis of VarianceAngiopoietin-1Animal ModelAreaArginineArtificial OrgansAspartic AcidBiocompatible MaterialsBiologyBioreactorsBlood VesselsCell Culture TechniquesCell physiologyCell-Matrix JunctionCellsChi-Square TestsChimeric ProteinsClinicClinicalCoculture TechniquesComputer AnalysisCytoplasmic TailCytoskeletal ModelingDNADataDevelopmentElastinEndothelial CellsEngineeringEnzyme-Linked Immunosorbent AssayExtracellular MatrixFacultyFailureFibronectinsFluorescence MicroscopyFocal Adhesion Kinase 1GleanGlycineGrowth FactorHumanImage AnalysisImplantIn VitroIntegrinsLeadLeftLengthLifeLigandsMeasuresMechanical StimulationMediatingMedicalMentorsMesenchymalMetabolicMolecularOrganOrgan TransplantationOxygenPatientsPeptide HydrolasesPerfusionPhosphorylationProcessProtein EngineeringProteinsRadialRecombinantsRegenerative MedicineRegression AnalysisResearchReverse Transcriptase Polymerase Chain ReactionSignal TransductionSpecific qualifier valueSpeedStaining methodStainsStem cellsStructureSurfaceTalinTechnologyTestingThickTissue EngineeringTissuesTrainingTranslatingTranslationsTransplantationVascular Endothelial Growth FactorsVascularizationWorkbaseblebbistatincell growthcell motilitycellular engineeringclinically relevantimplantationimprovedin vivomeetingsmonolayernanonanofibernanopatternnanoscalenovelpolymerizationpreventprofessorreceptorregenerative therapyscaffoldtwo-dimensionalvector
项目摘要
DESCRIPTION (provided by applicant): Patients suffering from failure of a vital organ can be treated with whole organ transplantation; transplantation alone, however, cannot meet the public's medical needs due to the limited supply of donated organs. Artificial tissues present an alternative to donated organs, but our inability to engineer functional microvessels within such constructs broadly prevents the development of clinically effective artificial tissues. Because all
tissue- scale regenerative therapies require perfusion, the ability to form functional microvasculature is paramount. Upon implantation of bulk artificial tissues without microvasculature, cells on the inside die from lack of oxygen, leaving a shell of live cells about 0.2 mm thick. Artificial vascularization will prevent this by creating a volume- spanning perfusion-competent network and by enabling swift vascular integration after implantation. To engineer microvasculature, we propose a novel biomaterials strategy: nanoscale clustering of cell- matrix adhesion ligands. Previous work on 2D surfaces has shown that clustering of ligands increases growth factor sensitivity and motility via receptor clustering. Research using animal models has shown that expression of molecular disruptors of receptor clustering is associated with a decrease in both branching and maturation. Though ligand clustering and receptor clustering are related thermodynamically, it is unknown whether nanoscale ligand clustering will lead to morphologically appropriate microvasculature in a 3D, bulk biomaterial. To answer this question, we have developed a nanofibrous biomaterial that can be fabricated at a specified bulk concentration and nanoscale clustering of adhesion ligands. By mimicking the nanoscale order of the native the extracellular matrix, we expect to achieve organotypic blood-vessel structure formation in vitro. We specifically hypothesize that clustering of adhesion ligands will upregulate three essential cellular process that lead to formation of blood-vessels in
vivo: (1) growth factor sensitivity, (2) cell motility, and (3) vessel branching and maturation. Growth factor sensitivity will be assessed by measuring proliferation, metabolic activity, and protease secretion. Motility, as parameterized by cell speed and persistence length, and cytoskeletal organization will be assessed by quantitative image analysis. Branching and maturation will be assessed by immunostaining for appropriate markers and computational analysis of morphological data. The biomaterials proposed here can be further developed as an implant for regenerative medicine by incorporating non- overlapping technologies such as co-culture of tissue-specific stems cells, growth factor delivery, and bioreactor/ mechanical stimulation. My mentor Sarah Heilshorn, an expert in protein-based materials engineering, and our collaborator John Cooke, a senior professor of microvascular signaling biology, have developed an appropriate training plan to accomplish this project.
描述(申请人提供):重要器官衰竭的患者可以进行全器官移植治疗;然而,由于捐献器官供应有限,仅靠移植无法满足公众的医疗需求。人造组织提供了捐赠器官的替代方案,但我们无法在此类结构中设计功能性微血管,这在很大程度上阻碍了临床有效人造组织的发展。因为所有
组织规模的再生疗法需要灌注,形成功能性微脉管系统的能力至关重要。植入没有微血管的大块人造组织后,内部细胞会因缺氧而死亡,留下约 0.2 毫米厚的活细胞壳。人工血管化将通过创建跨体积的灌注网络并在植入后实现快速血管整合来防止这种情况发生。 为了设计微脉管系统,我们提出了一种新颖的生物材料策略:细胞基质粘附配体的纳米级聚集。先前对 2D 表面的研究表明,配体簇通过受体簇增加了生长因子的敏感性和运动性。使用动物模型的研究表明,受体簇分子干扰物的表达与分支和成熟的减少有关。尽管配体簇和受体簇在热力学上相关,但尚不清楚纳米级配体簇是否会在 3D 块状生物材料中产生形态上合适的微脉管系统。为了回答这个问题,我们开发了一种纳米纤维生物材料,可以以指定的体积浓度和粘附配体的纳米级聚集来制造。通过模仿天然细胞外基质的纳米级顺序,我们期望在体外实现器官型血管结构的形成。我们特别假设粘附配体的聚集将上调三个重要的细胞过程,从而导致血管形成
体内:(1) 生长因子敏感性,(2) 细胞运动性,(3) 血管分支和成熟。通过测量增殖、代谢活性和蛋白酶分泌来评估生长因子敏感性。由细胞速度和持久长度参数化的运动性以及细胞骨架组织将通过定量图像分析进行评估。将通过适当标记的免疫染色和形态学数据的计算分析来评估分支和成熟。这里提出的生物材料可以通过结合非重叠技术(例如组织特异性干细胞的共培养、生长因子递送和生物反应器/机械刺激)进一步开发为再生医学的植入物。 我的导师 Sarah Heilshorn(蛋白质材料工程专家)和我们的合作者 John Cooke(微血管信号生物学高级教授)制定了适当的培训计划来完成这个项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Patrick Benitez其他文献
Patrick Benitez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Patrick Benitez', 18)}}的其他基金
NANO-PATTERNING OF BIOMATERIALS FOR BLOOD-VESSEL FORMATION IN ARTIFICIAL TISSUES
用于人造组织中血管形成的生物材料纳米图案化
- 批准号:
8318495 - 财政年份:2012
- 资助金额:
$ 3.19万 - 项目类别:
NANO-PATTERNING OF BIOMATERIALS FOR BLOOD-VESSEL FORMATION IN ARTIFICIAL TISSUES
用于人造组织中血管形成的生物材料纳米图案化
- 批准号:
8669817 - 财政年份:2012
- 资助金额:
$ 3.19万 - 项目类别:
相似国自然基金
基于“胞宫藏泻”理论探讨补肾养营活血方和HuMSCs调节ERS介导的细胞焦亡重塑粘连宫腔内膜容受态的研究
- 批准号:82305302
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人胎盘水凝胶类器官贴片重建子宫内膜对重度宫腔粘连的作用及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
负载羟基喜树碱的双层静电纺纳米纤维膜抑制肌腱粘连组织增生的作用和相关机制研究
- 批准号:82302691
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS清除型动态粘附水凝胶的制备及其在声带粘连防治中的作用与机制研究
- 批准号:82301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 3.19万 - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
$ 3.19万 - 项目类别:
Dissecting the Mechanims of Platelet-Fibrin interaction
剖析血小板-纤维蛋白相互作用的机制
- 批准号:
10722537 - 财政年份:2023
- 资助金额:
$ 3.19万 - 项目类别:
The role of enterocyte apical structure in inflammatory bowel disease pathogenesis
肠上皮细胞顶端结构在炎症性肠病发病机制中的作用
- 批准号:
9890480 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别:
The role of enterocyte apical structure in inflammatory bowel disease pathogenesis
肠上皮细胞顶端结构在炎症性肠病发病机制中的作用
- 批准号:
10618240 - 财政年份:2020
- 资助金额:
$ 3.19万 - 项目类别: